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 
Abstract—The study of the electrical signals produced by neural 

activities of human brain is called Electroencephalography. In this 
paper, we propose an automatic and efficient EEG signal 
classification approach. The proposed approach is used to classify the 
EEG signal into two classes: epileptic seizure or not. In the proposed 
approach, we start with extracting the features by applying Discrete 
Wavelet Transform (DWT) in order to decompose the EEG signals 
into sub-bands. These features, extracted from details and 
approximation coefficients of DWT sub-bands, are used as input to 
Principal Component Analysis (PCA). The classification is based on 
reducing the feature dimension using PCA and deriving the support-
vectors using Support Vector Machine (SVM). The experimental are 
performed on real and standard dataset. A very high level of 
classification accuracy is obtained in the result of classification. 
 

Keywords—Discrete Wavelet Transform, Electroencephalogram, 
Pattern Recognition, Principal Component Analysis, Support Vector 
Machine.  

I. INTRODUCTION 

LECTROENCEPHELOGRAPHY is the study of the 
electrical signals produced by brain. Production of 

electrical signals as a result of neural activity of the brain 
starts as early as from the 17th week of prenatal development. 
Electrical signals generated by the human brain represent the 
thinking of the mind and the status of the body. The close 
study of these Electro-EncephaloGram (EEG) signals is useful 
in many research areas such as detection and classification of 
event related potentials, seizure detection and prediction, 
brain–computer interfacing, Study of mental disorders like 
psychiatric disorders and dementia, and sleep signal analysis. 
For better understanding of human behavior, the EEG signal 
waves are further divided in five major sub-bands based on the 
frequency ranges. These bands from low to high frequencies 
respectively are called delta (δ)(Range 0.5-4Hz), theta 
(θ)(Range 4-8 Hz), alpha (α) (Range 8-13 Hz), beta (β)(Range 
13-30 Hz), and gamma (γ)(Range 30-45 HZ)[1]. 

The visual distinction of seizure from common artifacts 
within an EEG measurement is based on the shape and 
spikiness of the waveforms. A signal with seizure have a 
rhythmical and prominent spiky, whereas the most of other 
artifacts are non-stationary and randomly shaped. But 
considering the fact that the recorded EEG pattern is a special 
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mapping of signals captured by placement of electrode onto 
different regions of the scalp, it is extremely difficult for 
human being to observe and understand the actual behavior of 
the brain by merely visual inspection. Hence there is an ever 
increasing demand of easily accessible and fully automatic 
epileptic seizure detection system using EEG signals. 

In this paper we propose a statistical feature based epileptic 
seizure detection system. Statistical features are extracted 
from Discrete Wavelet transforms (DWT) of EEG signals. 
Further, Support Vector Machine (SVM) is used for 
classification into two classes i.e. is epileptic and normal. In 
order to reduce the time and space complexity and to avoid 
redundancy in the observed features, we have applied 
Principal Component Analysis (PCA) on the normalized 
feature matrix. 

II. RELATED WORK 

The electrical signals for brain activity were first recorded 
by the English scientist Richard Caton in 1875. Hans Berger 
started the study of EEGs from human brain in 1920 [2]. 
Epilepsy is a Greek word, which means ‘to seize or attack’. 
The very basic concepts of epilepsy can be found in ancient 
Indian medicine (4500–1500BC) as apasmara, which means 
“loss of consciousness”. Babylonian tablet in the British 
Museum in London also gives the detailed knowledge about 
the epileptic disease and its cure [1]. Kaufman associated the 
epileptic attacks with abnormal electrical discharges [3]. 

Most of the epilepsy analysis methods developed in the 
20th century were based on the concept of visual inspection of 
EEG signals by highly skilled electroencephalographers. 
However, with the advancement in the field of signal 
processing and pattern recognition, different automatic 
techniques of epileptic seizure detection have been developed 
in last two decades [6], [9]. 

Spectral analysis based feature extraction method provides 
poor results for EEG classification as the frequency domain 
information is provided at the cost of time domain information 
such as the amplitude distribution and EEG pattern. Hence, 
both time and frequency domain based feature extraction 
algorithms such as Discrete Wavelet Transform (DWT) are 
being used in current research [4]-[6]. The other advantage of 
DWT over spectral analysis is its suitability for analysis of 
non-stationary signals like EEG [7], [8]. Kai Fu et al. have 
recently published their work with Hilbert-Huang 
Transformed (HHT) based approach [9]. 
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III. DATA-SET FOR EXPERIMENTAL ANALYSIS 

In last few years, most of the researchers have used publicly 
available data described in [10] for their research work in the 
field of epileptic seizure detection. We are also using the same 
bench-mark database in order to compare our results with the 
results of previous research works. The database is prepared 
by taking inputs from different subjects and is divided into 
five sets (A-E) each containing 100 EEG samples recorded 
through single channel. The mental status of the subjects in 
each data set (A-E) at the time of data recording was as 
follows: 

A, B: Five healthy volunteers, relaxed in an awake state 
with eyes open (A) and closed (B). 

C, D: Activities measured during seizure free intervals of 
EEGs from five patients, all of whom had achieved complete 
seizure control and were correctly diagnosed.  

E: Contains seizure activity (recorded from the same 
patients as for set B and C). 

The data set were recorded using a 128-channel amplifier 
system and standardized 10-20 electrode placement scheme. 
After recording, the data were sampled and digitized at 173.61 
samples per second using 12 bit resolution. As the useful 
information from the data can be found only in δ, θ, α, β, and γ 
sub-bands, a band-pass filter with 0.50–40 Hz (12 dB/oct) was 
applied. In this study, we used the dataset A and E for 
classification, as only set E contains the samples from 
confirmed epilepsy (Class I), the data set A consists of sample 
from persons having no epilepsy (Class II).  

IV. PROPOSED ALGORITHM 

The stepwise details of the proposed algorithm are given in 
Table I. As described in Table I, we pick one EEG sample at a 
time and find its DWT coefficients. The features from the 
DWT coefficients are extracted and appended in the 
corresponding column of a feature matrix. Note that for a set 
of 100 EEG samples, the feature matrix will have number of 
column = 100, and number of rows = the total number of 
extracted feature. The same procedure is repeated for all the 
EEG samples. The final feature matrix is normalized and 
passed for dimension reduction using PCA. Binary SVM 
classification is performed on the dimension reduced feature 
matrix for classification. 

 

 

Fig. 1 3-Level wavelet decomposition of the sample data signal 
having 0-F Hz frequency range. The signal is decomposed into detail 

coefficients D1-D3 and approximation A3. The frequency range 
covered in different decompositions and approximation is shown in 

the bracket 
 

TABLE I 
STEPWISE DETAILS OF THE PROPOSED ALGORITHM 

1. i = 1  
2. for i< = size of the data set, do 
3. Decomposition the ith EEG sample using5-level DWT. 

4. 
Extract the statistical wavelet features from DWT coefficients, and put 
in ith column of feature matrix Ftr_Mat. 

5. end for. 
6. Normalization the Ftr_Mat (feature wise). 
7. PCA on Ftr_Mat for dimension reduction. 
8. Train the SVM and derive the support vectors. 
9. Apply SVM on test data for Classification. 
10. Measure the accuracy obtained by SVM classification. 

A. Feature Extraction Using DWT 

Fourier transform and other spectral analysis techniques are 
the popular tools used for analyzing stationary signals. 
However, for non-stationary signals like EEG, direct 
application of Fourier transform is not recommended. Hence, 
time-frequency analysis using wavelet transform have been 
adapted in the proposed work. 

A multi-level wavelet decomposition of the EEG samples 
provides the information at different resolutions of the 
samples at different frequency bands [11]. Fig. 1 shows 3-
level wave decomposition.  

The selection of the level of decomposition and the type of 
the basic wavelet is a problem specific criterion. For 
extracting the features from EEG samples, the frequency range 
of interest is 0-50 Hz. So the level of decomposition is chosen 
to be 5. Different kinds of wavelets were tried and the 
accuracy of the SVM classification was measured. It was 
observed that the Daubechies wavelet suits the EEG signals 
more and hence it was chosen as filter wavelet. Fig. 2 shows 
an EEG sample signal from set A, its decomposition D1-D5 
and approximation A5. Considering the frequency of our 
interest, decomposition D3-D5 and approximation A5 are 
chosen for feature extraction.  

Extracted wavelet coefficients provides both time and 
frequency representation of the EEG samples. Various 
statistical features are extracted from these coefficients as 
mentioned below: 
(1) Feature 1 to 4 consists of the mean of the absolute values 

of the approximation (A5) and details (D3-D5). 
 

[Ftr(1), Ftr (2), Ftr (3), Ftr (4)] = 
[mean(abs(A5)),mean(abs(D5)),mean(abs(D4)),mean(abs(D3))], 

 
Here Ftr is the feature vector for one EEG sample. 

(2) Feature 5 to 8 consists of the average of the square of the 
second order norm (equivalent to average power of 
discrete signals) of the approximation and details. 

(3) Feature 9 to 12 consists of the median of the actual values 
of the approximation and details. 

(4) Feature 13 to 16 consists of the standard deviation of the 
coefficients of the approximation and details. 

(5) Feature 17 to 20 consists of the kurtosis; feature 21 to 24 
consists of the skewness; and feature 25 to 28 consists of 
the entropy of the coefficients of the approximation and 
details. 
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