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Abstract—The number of Ground Motion Prediction Equations 

(GMPEs) used for predicting peak ground acceleration (PGA) and 
the number of earthquake recordings that have been used for fitting 
these equations has increased in the past decades. The current PF-L 
database contains 3550 recordings. Since the GMPEs frequently 
model the peak ground acceleration the goal of the present study was 
to refit a selection of 44 of the existing equation models for PGA in 
light of the latest data. The algorithm Levenberg-Marquardt was used 
for fitting the coefficients of the equations and the results are 
evaluated both quantitatively by presenting the root mean squared 
error (RMSE) and qualitatively by drawing graphs of the five best 
fitted equations. The RMSE was found to be as low as 0.08 for the 
best equation models. The newly estimated coefficients vary from the 
values published in the original works.     
 

Keywords—Ground Motion Prediction Equations, Levenberg-
Marquardt algorithm, refitting PF-L database.  

I. INTRODUCTION 

NE of the important goals in structural engineering is to 
properly design a structure bearing in mind that a 

devastating earthquake could occur during its lifetime. The 
ground-motion prediction equations (GMPEs) help the 
engineer to estimate the possible earthquake loading by 
providing the correlation between seismically important 
variables, such as the peak ground acceleration (PGA) and 
significant seismological aspects, such as magnitude and 
distance from source to site. In order to address these needs, 
over the past decades a great number of equations for PGA 
have been developed by researchers world-wide which are 
systematically presented in [1], which contains 360 such 
equations. The purpose of all these equations have varied from 
general purpose to restricted, e.g. these equations have applied 
for different geographic areas or magnitude intervals. 

The databases with earthquake recordings that have been 
available to researchers when designing equations for PGA 
have grown and improved in many respects in the past 
decades. The currently available database PF-L consists of 
3550 earthquake recordings [2] and has been used in several 
studies in the recent years (e.g. [3]-[5]). 
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The goal of the present work is therefore to explore the 
general applicability, physical plausibility and prediction 
accuracy of the adopted functional forms of existing equations 
in light of the latest PF-L database. At this point it should be 
noted that not all of the existing equations could be used for 
the study due to various reasons, therefore, a selection of the 
existing equations was made. Following this, the study uses 
the Levenberg-Marquardt algorithm in the Matlab program in 
order to fit the coefficients of the selected equations. Finally, 
five best equations in both quantitative and qualitative terms 
are selected and discussed. 

II.  METHOD 

A. PF-L Database 

The data used for the study is the PF-L database [2] 
consisting of 3550 earthquake recordings from Europe and the 
Americas. The PF-L database contains data about the 
earthquake moment magnitude Mw, the source-to-site Joyner-
Boore distance Rjb (3550 recordings), rupture to site distance 
Rrup (3083 recordings), the style-of-faulting F (with values of 
F =0 for normal, F =0.5 for strike-slip and F =1 for reverse 
faults type of fault F, respectively), soil class (characterized by 
the average shear-wave velocity in the top 30 meters of soil, 
Vs,30 and the peak ground acceleration PGA. The PGA can be 
considered a dependent variable (usually expressed in g-units), 
defined as the geometrical average of both horizontal 
components. The actual data is relatively sparse at high 
magnitudes and short distances. 

B. Existing Equation Models for PGA 

While the summary of Douglas [1] contains 360 equations 
not all of their functional forms could be used for refitting in 
connection to the PF-L database due to various reasons (e.g. in 
many occasions the equations for PGA use additional 
parameters, which are not contained in the PGA database or 
the documentation of some of the equation forms lacks 
important details). Following this initial analysis of the 
summary of Douglas, a list of 44 functional forms for PGA 
was made that are appropriate for refitting. These selected 
forms of equations for PGA are the following (presented in 
order of year published): Ambraseys [1, Section 2.12], 
Faccioli [1, Section 2.18], Faccioli [1, Section 2.22], Faccioli 
& Agalbato [1, Section 2.23], PML [1, Section 2.34], Schenk 
[1, Section 2.35], PML [1, Section 2.46], Sabetta & Pugliese 
[1, Section 2.50], Ambraseys [1, Section 2.67], Ambraseys & 
Bommer [1, Section 2.74], Garcìa-Fernàndez & Canas [1, 
Section 2.76], Ambraseys et al. [1, Section 2.86], Theodulidis 
& Papazachos [1, Section 2.92], Musson et al. (2 models) [1, 
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Section 2.108], Ambraseys [1, Section 2.113], Sarma & Free 
[1, Section 2.118], Ambraseys et al. & Simpson [1, Section 
2.119], Sarma & Srbulov [1, Section 2.146], Smit [1, Section 
2.148], Ólafsson & Sigbjörnsson [1, Section 2.152], 
Ambraseys & Douglas [1, Section 2.157], Gülkan & Kalkan 
[1, Section 2.175], Tromans & Bommer [1, Section 2.181], 
Boomer et al. [1, Section 2.187], Halldórsson & Svelnsson (2 
models) [1, Section 2.189], Skarlatoudis et al. [1, Section 
2.192], Bragato [1, Section 2.195], Kalkan & Gülkan [1, 
Section 2.197], Özbey et al. [1, Section 2.202], Ambraseys et 
al. [1, Section 2.207], Bragato [1, Section 2.209], Bragato & 
Slejko [1, Section 2.210], Akkar & Boomer [1, Section 2.235], 
Danciu & Tselentis [1, Section 2.242], Cauzzi & Faccioli [1, 
Section 2.254], Cotton et al. [1, Section 2.256], Massa et al. 
[1, Section 2.260], Akyol & Karagöz [1, Section 2.266], 
Pétursson & Vogfjörd [1, Section 2.275] and Faccioli et al. [1, 
Section 2.283]. 

An example of these equation models is the model of 
Ambraseys [1, Section 2.12] as follows: 
 

 log log                  (1) 
 

The original values of the coefficients ,  and , are 
0.46, 0.63 and -1.10, respectively. These coefficients were 
fitted again by using the PF-L database along with the 
Levenberg-Marquardt algorithm. 

C. Refitting Coefficients with Levenberg-Marquardt 

The Levenberg-Marquardt algorithm in Matlab was used 
for refitting the existing coefficients of the functional forms of 
equations for PGA. This algorithm is very adequate as it does 
not assume range bounds when it is fitting coefficients. 
Nevertheless, the actual coefficient fitting procedure was 
restarted 100 times for each functional form of the selected 
equations and also by choosing initial values for the 
coefficients from different value ranges [-1, 1], [-10, 10] and [-
100, 100]. From each set of trials the best fitted form of the 
equation for PGA was selected.  

Once properly fitted, functional forms of the equations can 
predict the PGA and the prediction accuracy can be compared 
by using the value of the Root Mean Square Error (RMSE) 
(2). The RMSE can be calculated by comparing the measured 
and the predicted values for PGA as follows: 
 

√ ∑                 (2) 

 
It should be noted also that all equations were refitted two 

times: the first time by using the Rjb distance and the second 
time by using the Rrup distance. Both distances are frequently 
used in equation models for PGA and the aim was to 
investigate the use of which distance contributes to more 
accurate prediction.  

III. RESULTS 

A. New Coefficients 

The newly fitted coefficients for the 44 chosen equation 
forms are presented in Table I. The coefficients of the 
equation functional forms are marked as ,  … ,  
bearing in mind that the most elaborate equation forms contain 
as many as 11 coefficients. The coefficients are presented in 
the order of appearance in the respective equation form. 
Should we consider (1) (above) for example,  stands for 
coefficient ,  stands for  and  stands for .  

When comparing the use of the distances Rjb and Rrup it 
appeared that in all cases except for the equations García-
Fernández & Canas Canas [1, Section 2.76], Musson et al. [1, 
Section 2.108] (first model), Smit [1, Section 2.148] and 
Halldőrsson & Sveinsson [1, Section 2.189] (second model) 
the use of the Rjb distance contributed to better prediction 
accuracy. For the equation Pétursson & Vogfjörd [1, Section 
2.275] it is necessary to calculate two special coefficients that 
should be calculated separately after the fitting procedure by 
using the formulae: /  and / . 

B. Prediction Accuracy 

The prediction accuracy was analyzed by comparing the 
RMSE errors for all selected equation functional forms 
regardless of the distance used Rjb or Rrup. The results are 
presented in Fig. 1. As it can be seen from the figure most of 
the refitted equations have approximately the same RMSE 
regardless of the year when the equations were published and 
regardless of the data which was available at that time. It can 
also be noted that most of the equations have RMSE in the 
range between 0.08 and 0.1. This suggests that there exists a 
lower bound on the prediction error for this method (of fitting 
equation forms).  

C. Graphs of Five Most Accurate Equations 

Five equations for which the RMSE was the lowest are the 
following: Pétersson & Vogfjörd [1, Section 2.275] – 1 with 
RMSE = 0.082, Bragato & Slejko [1, Section 2.210] – 2 with 
RMSE = 0.084, Akkar & Boomer [1, Section 2.235] – 3 with 
RMSE = 0.085, Faccioli [1, Section 2.18] – 4 with RMSE = 
0.085 and Bragato [1, Section 2.195]– 5 with RMSE = 0.085.  

Graphs of these equation forms are drawn in Figs. 2-4. The 
graphs are drawn for three different magnitudes (Mw=5, 6 and 
7), for F=strike-slip fault type and shear wave velocity 
Vs,30=520 m/s. 
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TABLE I 
REFITTED COEFFICIENTS

Equation a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 
[1, Section 2.12] 1,52 0,2 -0,68 
[1, Section 2.18] 26226 0,12 1,84 
[1, Section 2.22] 3,18 0,27 -1,72 
[1, Section 2.23] 1,43 0,21 -0,68 
[1, Section 2.34] -3,17 0,88 -1,33 0,1 0,74 
[1, Section 2.35] 0,21 0,68 1,43 
[1, Section 2.46] -1,64 0,62 -1,31 0,5 0,48 0,05 
[1, Section 2.50] -1,34 0,26 -5,72 0,05 
[1, Section 2.67] -1,31 0,27 6,43 -0,001 
[1, Section 2.74] -0,89 0,2 6,3 -0,0005 
[1, Section 2.76] 2,75 0,57 0,01 
[1, Section 2.86] -1,18 0,27 -0,00002 7,59 -1,1 
[1, Section 2.92] 6,14 0,47 -1,28 9,81 -0,14 
[1, Section 2.108] 4,29 0,55 -0,001 
[1, Section 2.108] -0,55 0,54 0,002 
[1, Section 2.113] -0,76 0,2 0,00004 7,5 -1,1 
[1, Section 2.118] -3,06 0,88 -0,05 -1,15 -7,83 0,0003 0,07 
[1, Section 2.119] -0,82 0,2 -1,1 -7,33 0,02 0,12 
[1, Section 2.146] -1,57 0,19 -0,004 -0,44 
[1, Section 2.148] 7,93 0,14 0,23 
[1, Section 2.152] 2,56 0,14 0,68 
[1, Section 2.157] -1,14 0,2 -0,01 -0,02 0,07 
[1, Section 2.175] 2,08 0,68 -0,11 -1,1 -7,13 -0,19 1,81 
[1, Section 2.181] 2,17 0,2 -1,1 -7,33 0,02 0,12 
[1, Section 2.187] -0,84 0,2 -1,09 -7,06 0,01 0,12 0,03 0,05 
[1, Section 2.189] 0,21 0,68 -1,56 
[1, Section 2.189] 0,24 0,00028 -1,13 
[1, Section 2.192] 1,73 0,27 -1,12 -7,67 -0,01 0,08 
[1, Section 2.195] -0,43 0,28 -0,02 -1,76 0,1 -7,72 
[1, Section 2.197] 0,91 0,89 -0,03 -0,13 -1,12 7,39 0,19 0,27 
[1, Section 2.202] 3,4 0,3 -0,05 -1,1 -7,11 0,11 0,18 
[1, Section 2.207] 0,88 0,08 -1,79 0,11 7,57 0,12 0,01 0,03 0,06 
[1, Section 2.209] -1,11 0,2 -0,01 
[1, Section 2.210] -3,12 1,2 -0,1 -1,44 0,0013 -7,76 
[1, Section 2.235] 0,73 0,84 -0,07 -2,06 0,15 -7,45 0,13 0,03 0,04 0,05 
[1, Section 2.242] 1,74 0,27 1,12 -7,65 0,08 0 
[1, Section 2.254] -0,58 0,21 -0,69 -0,03 0,07 0,13 
[1, Section 2.256] -2,44 0,84 -0,04 0 0,01 
[1, Section 2.260] 0,31 0,26 -1,1 -7,64 -1,43 -1,36 
[1, Section 2.266] -0,28 0,21 -0,68 0,11 
[1, Section 2.275] -1,32 0,02 0,83 -0,04 -2,71 
[1, Section 2.283] -3,05 0,37 -1,31 0,09 0,33 0,02 0,12 0,19 4,61 4,64 3,59 
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Fig. 1 RMSE of each refitted GGMPE 
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IV. CONCLUSION 

In this study we refitted the coefficients of 44 selected 
GMPEs by using the latest PF-L database. All equations 
coefficients were fitted two times by using the Rjb and Rrup 
distances. In most cases better fits were obtained when using 
the Rjb distance. The selected equation functional forms were 
compared quantitatively by using the RMSE error and five 
best fitted equations were presented. A lower bound for the 
RMSE was found at the value 0.08. Many of the equations 
functional forms had good fits with RMSE errors between the 
values of 0.08 and 0.1, regardless of the number of 
coefficients and complexity of the formulae and regardless of 
the year when the equation was first published. The presented 
graphs for the five best equations functional forms suggest that 
they are also adequate for engineering purposes.  
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