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 
Abstract—Job Scheduling plays an important role for efficient 

utilization of grid resources available across different domains and 
geographical zones. Scheduling of jobs is challenging and NP-
complete. Evolutionary / Swarm Intelligence algorithms have been 
extensively used to address the NP problem in grid scheduling. 
Artificial Bee Colony (ABC) has been proposed for optimization 
problems based on foraging behaviour of bees. This work proposes a 
modified ABC algorithm, Cluster Heterogeneous Earliest First Min-
Min Artificial Bee Colony (CHMM-ABC), to optimally schedule 
jobs for the available resources. The proposed model utilizes a novel 
Heterogeneous Earliest Finish Time (HEFT) Heuristic Algorithm 
along with Min-Min algorithm to identify the initial food source. 
Simulation results show the performance improvement of the 
proposed algorithm over other swarm intelligence techniques. 
 

Keywords—Grid Computing, Grid Scheduling, Heterogeneous 
Earliest Finish Time (HEFT), Artificial Bee colony (ABC) 
Algorithm, Resource Management.  

I. INTRODUCTION 

RID is used for large scale distributed and parallel 
computing systems. Each node in a grid environment 

shares their resources dynamically during the execution of an 
application. Usually the resources are heterogeneous and 
distributed geographically. The selection of a resource 
depends on the availability, cost and Quality of Service (QoS) 
requirement of the applications [1]. Grids have been widely 
used for Computational Services, Data Services, Application 
Services, Information Services and Knowledge Services 
applications [2].  

Grid scheduling is the activity of allocating different jobs to 
the available resources. Some of the resources available in 
grid computing are storage space, network bandwidth, CPU 
cycles and software. The assignment of jobs to the resources 
should be optimal to minimize the makespan, minimize the 
cost of allocated resources and maximize the throughput [3]. 
Various scheduling algorithms have been proposed in 
literature for scheduling resources in the grid environment [4], 
[5].  

Grid environments are dynamic, heterogeneous and 
unpredictable computing systems sharing different services 
between users. Due to the grid’s heterogeneous and dynamic 
nature traditional methods are not applicable for grid 
scheduling. Scheduling is important area that needs to be 
addressed to achieve high grid environment performance as it 
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aims to find suitable resources allocation for every job. 
Scheduling decision should address effective resource 
utilization to reduce job tardiness, when scheduled. Finding 
optimal resource allocation for specific jobs which reduce jobs 
schedule length is a challenging research area. Scheduling 
problem is NP-complete problem [6] and not trivial.  

To get optimal scheduling plan, evolutionary algorithms 
and swarm intelligence algorithms have been effectively used 
[7]. Meta-heuristics techniques like Particle Swarm 
Optimization (PSO) [8], Ant Colony Optimization (ACO) [9], 
and Genetic Algorithm (GA) [10] have been efficiently used 
for the grid scheduling problem in literature. Meta heuristic 
algorithms have been found to be more effective if the initial 
population is selected from existing sub optimal scheduling 
algorithms like First Come First Serve (FCFS) earlier used for 
solving queuing problems [11]. Longest Job First (LJF) and 
FCFS as initial schedule was used for the Fuzzy Particle 
Swarm based scheduling [12], Shortest Job First (SJF) as 
initial scheduler for Swift Scheduler algorithm [13] and SJF 
and LJF as initial schedule for GA based scheduler [14] have 
been used in literature. 

There is increasing interest in Multi-Objective Evolutionary 
Algorithm (MOEA) [15] which combines evolutionary 
algorithms with theoretical frameworks of multi-criteria 
decision making. Though some real world problems are 
reduced to a single objective usually it is hard to define a 
single objective’s aspects. Defining multiple objectives 
provides a better idea of a task. Multi-objective evolutionary 
algorithms yield potential solutions, optimal in some sense. 
Multi-objective optimization environment’s main challenge is 
minimizing distance of generated solutions to Pareto set and 
maximizing developed Pareto set diversity [16]. A good 
Pareto set is obtained by guiding the search process through 
reproduction operators/fitness assignment design strategies. 
To diversify, special care is ensured in the selection process. 
Similar care prevents non-dominated solutions from getting 
lost. 

This paper proposes a new scheduling technique based on 
Artificial Bee Colony algorithm (ABC) for Grid scheduling. 
ABC algorithm is a meta-heuristic approach based on foraging 
behaviour of honey bee swarm [17]. It does not require cross 
over rate and mutation rate as in case of genetic algorithm to 
solve the problem. ABC algorithm has been effectively used 
to solve constrained and unconstrained function optimization 
problems. ABC’s advantage over other optimization 
algorithms includes its [18]:  
• Simplicity, flexibility and robustness 
• Use of reduced control parameters compared to other 
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search techniques 
• Hybridization ease with other optimization algorithms 
• Ability to handle objective cost with stochastic nature 
• Easy implementation with basic mathematical/logical 

operations.  
Section II reviews some of the related works available in 

the literature, Section III details about the methods used. 
Section IV discusses the simulation environment and the 
results obtained, Section V concludes the paper. 

II. RELATED WORKS 

Job scheduling in a grid environment are based on popular 
heuristic algorithms such as min-min, fast greedy, Tabu 
Search and Ant System. Heuristic algorithms proposed for job 
scheduling rely on static environment and expected value of 
execution times. Casanova et al. [19] and Baraglia et al. [20] 
proposed heuristic algorithms to solve scheduling issues based 
on differing static data, for example, execution time and 
system load. 

Fidanova et al. [21] presented a heuristic scheduling 
algorithm based on ACO, designed to achieve high throughput 
computing with load balancing in grid environment. An ACO 
algorithm to schedule large-scale work-flows with various 
QoS parameters was proposed by [22] which enabled users to 
specify their QoS preferences and also define minimum QoS 
thresholds for specific applications. A task scheduling strategy 
based on Chaotic ACO Algorithm, using the randomness 
periodicity and regularity of chaotic motion to improve the 
quality of ant's individuals was presented by [23]. 

Garg and Singh [24] proposed the design/implementation of 
hierarchical discrete PSO (H-DPSO) for grid environment’s 
dependent task scheduling to minimize makespan and total 
cost. In H-DPSO particles are dynamic hierarchically arranged 
with good particles lying above and having higher influence 
on swarm. Karimi and Motameni [25] presented Tasks 
Scheduling in Computational Grid using an H-DPSO where 
particles were initialized by Min-Min algorithm. In [26] 
searching of particle in each sub-swarm, a scenario for grid 
resource allocation was produced. Tao et al. [27] proposed a 
rotary hybrid discrete particle swarm optimization (RHDPSO) 
algorithm for QoS Constrained Grid Workflow Scheduling 
Optimization.  

Genetic algorithms minimize average job completion time 
through optimal job allocation on each node in application 
level scheduling [28]. Khanli et al. [29] presented a Reliable 
Job Scheduler using Resource Fault Occurrence History 
(RFOH) in Grid Computing. RFOH stored the number of 
faults occurred and number of jobs in execution using this 
resource. Based on the RFOH information, GA was used to 
find an optimum schedule. Kashyap et al. [30] proposed a 
security driven scheduling model for large computational grid 
using genetic algorithm which helps to incorporate security 
into task scheduling. 

A binary artificial bee colony (BABC) algorithm for grid 
computing was proposed by [31]. The proposed technique 
incorporates a flexible ranking strategy (FRS) to improve 
balance between exploration and exploitation. Simulation 

results for benchmark job scheduling issues showed that the 
proposed method’s performance is better than alternatives like 
simulated annealing, genetic algorithms, and particle swarm 
optimization. Selvi and Umarani [32] presented Comparative 
Study of GA and ABC for Job Scheduling. Simulations were 
conducted with five different job sets. Numerical results 
showed that hybrid GA-ABC job scheduling gave lower 
makespan compared to GA and ABC scheduling algorithms. 

To overcome local minima problem various hybrid 
techniques have been proposed in the literature. Mandloi and 
Gupta [33] presented adaptive job scheduling based on ACO 
with Genetic Parameter Selection. GA was used to control the 
parameters of ACO algorithm. Failure in execution of jobs and 
job completion were taken for evaluating the performance of 
proposed scheduling algorithm. Evaluation of results proved 
that optimization algorithm using GA and PSO was better than 
FCFS algorithm. Xue et al. [34] proposed a hybrid clonal 
selection genetic algorithm (HCSGA) for solving task 
scheduling problem. Hu et al. [35] presented HPSOA Hybrid 
Particle Swarm Optimization (HPSO) algorithm to resolve 
dynamic web services selection with QoS global optimal in 
grid workflow.  

Many techniques other than swarm intelligence and 
Evolutionary algorithms have been proposed for grid 
scheduling. Fidanova et al. [36] introduced a grid computing 
tasks scheduling algorithm based on simulated annealing 
(SA). Martino [37] designed a two level scheduling system, 
with first level being formed by a computing node set – each 
with a local scheduling policy – and a second level formed by 
super scheduler. The proposed technique used local search 
strategy to improve convergence when number of jobs is large 
as in the real world operations. Pooranian et al. [38] presented 
Group Leader Optimization Algorithm (GLOA) for Job 
Scheduling. The capability of Linear Programming (LP) and 
GA was combined with LP-driven GA algorithm which aims 
the best meta-scheduling that minimizes the combined cost of 
all users with negligible time overhead [39]. Rao [40] 
proposed a Differential Evolution approach to generate an 
optimal scheduling which helps to complete the jobs within a 
minimum period of time.  

The Heterogeneous Earliest Finish Time (HEFT) algorithm 
achieves shorter schedule lengths compared to other 
algorithms [41]. In HEFT algorithm, ranking function is used 
to compute a value of the subtasks and accordingly scheduled. 
Abdelkader and Omara [42] proposed a Clustering Based 
HEFT with Duplication (CBHD) for dynamic task scheduling. 
The proposed CBHD is a combination of HEFT and triplet 
clustering algorithm which achieves better execution time and 
load balancing. Tang et al. [43] developed stochastic HEFT 
(SHEFT) scheduling algorithm which includes stochastic 
attributes to facilitate efficient scheduling precedence 
constrained stochastic tasks. 

III. METHODOLOGY  

In this work a hybrid ABC using modified HEFT based 
clustering along with min-min algorithm to create the initial 
population is proposed. The block diagram of the proposed 
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methodology is shown in Fig. 1.  
 

 

Fig. 1 Block diagram of the Proposed Methodology 
 
A. Generation of Initial Populations  

Heterogeneous Earliest Finish Time (HEFT) is a list 
scheduling heuristics [41] based on the two components: a 
priority function, which is used to order all nodes in the task 
graph at compile time; and an objective function which must 
be minimized. The priority function used by HEFT is based on 
“upward ranking” which is the length of the critical path from 
a task to the exit task, including the computation cost of this 
task. The upward rank of a task is the sum of the average 
execution cost of this task over all available processors and a 
maximum computed over all its successors. The terms of this 
maximum are the average communication cost of an edge and 
the upward rank of the successor. 

The Earliest Start Time (EST) is the moment when the 
execution of a job can actually begin on a resource. An 
execution can start either when a processor becomes available 
or when all needed data has arrived on the resource. Adding 
the execution cost, the Earliest Finish Time (EFT) of a task is 
obtained. HEFT uses the EFT as the objective function for 
selecting the best processor for a job [44]. 

The weights assigned to the nodes are calculated based on 
the predicted execution times of the jobs. The weights 
assigned to the edges are calculated based on predicted times 
of data transferred between the resources. In homogeneous 
environments the weights are equal to the predicted times. In 
heterogeneous environments, the weights must be 
approximated considering different predictions for execution 
times on different resources, and for different data transfer 
times on different data links.  

The ranking phase is performed traversing the workflow 
graph upwards, and assigning a rank value to each of the tasks. 
Rank value is equal to the weight of the node plus the 
execution time of the successors. The successor execution 

time is estimated, for every edge being immediate successors 
of the node, adding its weight to the rank value of the 
successive node, and choosing the maximum of the 
summations. A list of resources is arranged, according to the 
decreasing rank values.  

In the proposed Cluster HEFT (CHEFT), the grid is first 
partitioned into clusters for better utilization of the distributed 
resources. The grid can be represented by an acyclic graph 
G(V,E) where V is a set of nodes which represents the 
resources and E is a set of directed edges which represents the 
interconnection between the resources. The fan-out of the data 
communication equipment is the number of edges incident 
from it and the fan-in is the number of edges incident to it. 
Primary input is a resource with zero fan-in and primary 
output is a resource with zero fan-out. In the given acyclic 
graph G, each node in V is assigned weights except for the 
primary input resource which is assigned zero weight. 

 

 

Fig. 2 Cluster formed before HEFT  
 
The resources in the grid are clustered into a sparser 

network so that the maximum fan-out is minimized. Thus, the 
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total number of edges is reduced in the clustered network. 
After clustering, the number of edges is equal to the number of 
clusters as only one fan out is radiated from each cluster. This 
helps to produce a good initial solution for the scheduling 
process. Fig. 2 shows a sample clustering of the resources. The 
pseudo code of the proposed Cluster HEFT (CHEFT) is shown 
in Fig. 3.  

Min-Min algorithm schedule tasks by considering the 
execution time of the tasks on the resources. The Min-min 
algorithm begins with the set U of all unscheduled tasks. The 
set of minimum completion times for each of the tasks exiting 
in U is found. Next, the task with the overall minimum 
completion time from unscheduled tasks is selected and 
assigned to the corresponding resource. 

Last, the newly scheduled task is removed from U and the 
process repeats until all tasks are scheduled [45]. The flow of 
min- min algorithm is shown in Fig. 4. In Fig. 4 rj denotes the 
expected time which resource Rj will become ready to execute 
a task after finishing the execution of all tasks assigned to it. 
First, the Cij entries are computed using the Eij (the estimated 
execution time of task Ti on resource Rj) and rj values. For 
each task Ti, the resource that gives the earliest expected 
completion time is determined by scanning the ith row of the 
C matrix (composed of the Cij values). The task Tk that has 
the minimum earliest expected completion time is determined 
and then assigned to the corresponding resource. The matrix C 
and vector r are updated and the above process is repeated for 
tasks that have not yet been assigned to a resource. 

 

 

Fig. 3 The proposed HEFT algorithm  
 

CLUSTER(resource, vector, i) 
Represent fan-in resources of i as vector 
While test vector 

If vector>0 
i = a randomly selected resource from vector 
 j = numbers of resource that can be reached by i 
If current cluster size + j <max cluster size 
Assign the set S of resource that can be reached by i to the current cluster 

Remove the clustered resource from vector  
Do While 
HEFT(cluster, s) 

Store processing capability of each cluster in descending order in s 
ܵ௠௔௫ ൌ ∑ ሺ݆ሻ௤ݏ

௝ୀଵ  (cluster with q cpu time) 
While set of task ݑ ് 0 
For each task ݅ 
Compute the optimal capacity ௜ܵ

 כ
If ∑ ௜ܵ

כ ൌ  ܵெ஺௑௜  
For each ready task ݅ 
݅ݏ ′ ൌ ሺ

ௌಾಲ೉

∑ ௌೕ
כ

೔
൐ ௜ܵ

  כ

Else 
For each ready task ݅, ݅ݏ ′= ௜ܵ

 כ
      End If 

Compute actual t-level  
While ready task =׎ 
݅=task with minimum t-level,݈ݐ௜ ൌ  ݅ ݂݋ ݈݁ݒ݈݁ ݐ
K=fastest cluster free at ݈ݐ௜  OR first cluster free after ݈ݐ௜ 

௜′ݐݏ݁ ൌ ௜ݐݏ݁ ൌ ,௜݈ݐሺܺܣܯ ,ݕݐ݈ܾ݈݅݅ܽ݅ܽݒܽ ܶ݅݉݁௄ሻ p=1, ݏ௜=0 
While ௜ܵ ൏ ܵ′௜ 
If p=1 OR ݁ݐݏ௜ + ݐ௜, p <   ݁ݐݏ௜  ௜, p -1 # add clusterݐ + ′

V (p) =k, ݁ݐݏ′௜ ൌ ݌,௜ݐݏ݁ ൌ ݌ ൅ 1, ௜ݏ ൌ ௜ݏ ൅  ሺ݇ሻݏ
 K=next fastest cluster. Free at ݈ݐ௜ OR 

Next cluster. free after ݈ݐ௜ 
If  k=null break  # all clusters analyzed  
 ( , , )i i Kest MAX tl availability Time   

Compute b-level of ready task ,w=1 
While true 
݄ܾ݈ሺݓሻ task with higher b-level 
ݎ ൌ  with minimum b-level ݇ݏܽݐ
 exists in ݄ܾ݈ break ݎ ݂݅
Remove fastest cluster assigned at task r 
Assign it to task ݄ܾ݈ሺݓሻ 
Re-evaluate proc. Time of r and ݄ܾ݈ሺݓሻ 
Re-evaluate b-level of r and ݄ܾ݈ሺݓሻ 

1W W    
      End If 
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Fig. 4 Steps in Min-Min scheduling algorithm  
 
B. Scheduling Using Artificial Bee Colony (ABC) Algorithm 

Artificial Bee Colony (ABC) algorithm is based on the 
social behaviour of honey bee colonies. Honey bees share 
information about the location, quantity and quality of foods. 
This information sharing activity can be used for resource 
management problems of grid scheduling. There are three 
types of honey bees in a bee colony. They are Onlooker bees, 
employed bees and scout bees. Employed bees search the 
locations of food in parallel and inform to other bees by 
dancing. Onlooker bees evaluate and select the best solution 
among the solutions given by all the employed bees. Scout 
bees start a new search for solution. Detailed description of 
ABC can be found in [46]-[48]. 

For each task Ti, which will be processed until completion 
in resource Rj, Cij is the time taken to complete the task. An T 
x N matrix X=xij where xij=1 if task is assigned to the resource 
else 0 is created. We use a single objective function based on 
makespan in this work. ABC is based on two natural 
processes: recruitment of bees to a food source and source 
abandonment. The difference between ABC and other swarm 
intelligence algorithms is that in the former, problem’s 
solutions are represented by food sources, not bees. In 
comparison, bees act as variation operators discovering 
(generating) food sources based on existing ones. The 
employed bees are equal in number to the number of food 
sources with an employed bee being assigned to one source. 
On reaching the source, the bee calculates a new solution 
(flying to another food source) and retains the best solution 
using greedy selection technique. When a source fails to 
improve iteratively, it is dumped and replaced by food source 
found by scout bee, which in turn involves a random 
calculation of a new solution. 

Foraging bee’s emergent intelligent behaviour can be 
summarized as: 
1. During initial foraging phase, bees start exploring 

environment randomly to locate a food source. 
2. After locating a food source, bee is an employed forager 

starting to exploit the discovered source. The employed 
bee returns to hive with nectar and unloads it. After 
unloading she goes back to discovered source site directly 
or shares information about the source through a dance on 
the dance floor. When her source is exhausted, the scout 
starts a random search for a new source. 

3. Onlooker bees in the hive watch dances advertising 
profitable sources and choose a source site depending on 
dance frequency proportional to source quality. 

Classical ABC includes 4 phases [49] [50]. 

Initialization Phase:  

Food sources, with SN population size, are generated 
randomly by scout bees. The Artificial Bee number is NP. 
Each food source xm is a vector to optimization problem, xm 
has D variables and D is searching space dimension of 
objective function needing optimization. Initial food sources 
are produced randomly by (1)   

 

(0,1)*( )m i i ix l rand u l           (1) 

 
where ui and li are upper and lower bound of the objective 
function’s solution space, rand (0,1) is a random number 
within the range [0,1]. 

Employed Bee Phase:  

Employed bees fly and locate a new food source in the food 
source’s neighbourhood. A high quality food source is 
selected. A neighbour food source vmi is determined/calculated 
by using (2) 

 

    
( )mi mi mi mi kiv x x x  

      
 (2) 

 
where xk is randomly selected food source, i is randomly 
chosen parameter index, mi φ is a random number within 
range [-1,1]. The food source fitness is essential to find a 
global optimal. Fitness is computed using (3). After which a 
greedy selection is applied between xm and vm. 
 

1
, ( ) 0

1 ( )( )

1 ( ), ( ) 0

m m
m mm m

m m m m

f x
f xfit x

f x f x

    
   

     (3) 

 
where fm(xm) is the objective function value of xm. 

Onlooker Bee Phase:  

Onlooker bees see waggle dance in dance area and calculate 
food sources profitability and randomly choose a better food 
source. Food source quantity is evaluated by profitability and 
profitability of all food sources and determined by (4) 

 for all tasks Ti in meta-task Mv 
  for all resources Rj 
   Cij=Eij+rj 
 do until all tasks in Mv are mapped 
  for each task in Mv find the earliest  

find the task Tk with the minimum earliest completion time 
 assign task Tk to the resource Rl that gives the earliest completion time 
  delete task Tk from Mv 
 update rl 
  update Cil for all i 
end do 
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are conducted with 50 jobs, and the resources are grouped into 
10 clusters. Simulation result shows a decrease of makespan 
of 11.94% to 16.99% by the proposed ABC when compared to 
the classic ABC. 
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