
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2070


Abstract—Job Scheduling plays an important role for efficient

utilization of grid resources available across different domains and
geographical zones. Scheduling of jobs is challenging and NP-
complete. Evolutionary / Swarm Intelligence algorithms have been
extensively used to address the NP problem in grid scheduling.
Artificial Bee Colony (ABC) has been proposed for optimization
problems based on foraging behaviour of bees. This work proposes a
modified ABC algorithm, Cluster Heterogeneous Earliest First Min-
Min Artificial Bee Colony (CHMM-ABC), to optimally schedule
jobs for the available resources. The proposed model utilizes a novel
Heterogeneous Earliest Finish Time (HEFT) Heuristic Algorithm
along with Min-Min algorithm to identify the initial food source.
Simulation results show the performance improvement of the
proposed algorithm over other swarm intelligence techniques.

Keywords—Grid Computing, Grid Scheduling, Heterogeneous
Earliest Finish Time (HEFT), Artificial Bee colony (ABC)
Algorithm, Resource Management.

I. INTRODUCTION

RID is used for large scale distributed and parallel
computing systems. Each node in a grid environment

shares their resources dynamically during the execution of an
application. Usually the resources are heterogeneous and
distributed geographically. The selection of a resource
depends on the availability, cost and Quality of Service (QoS)
requirement of the applications [1]. Grids have been widely
used for Computational Services, Data Services, Application
Services, Information Services and Knowledge Services
applications [2].

Grid scheduling is the activity of allocating different jobs to
the available resources. Some of the resources available in
grid computing are storage space, network bandwidth, CPU
cycles and software. The assignment of jobs to the resources
should be optimal to minimize the makespan, minimize the
cost of allocated resources and maximize the throughput [3].
Various scheduling algorithms have been proposed in
literature for scheduling resources in the grid environment [4],
[5].

Grid environments are dynamic, heterogeneous and
unpredictable computing systems sharing different services
between users. Due to the grid’s heterogeneous and dynamic
nature traditional methods are not applicable for grid
scheduling. Scheduling is important area that needs to be
addressed to achieve high grid environment performance as it

T. Vigneswari is with Kings College of Engineering, Tamilnadu, India

(Phone: +91 9066002047; e-mail: vigneswari.gri@gmail.com).
M. A. Maluk Mohamed is with M. A. M College of engineering,

Tamilnadu, India (e-mail: malukmohammed.mam@rediffmail.com).

aims to find suitable resources allocation for every job.
Scheduling decision should address effective resource
utilization to reduce job tardiness, when scheduled. Finding
optimal resource allocation for specific jobs which reduce jobs
schedule length is a challenging research area. Scheduling
problem is NP-complete problem [6] and not trivial.

To get optimal scheduling plan, evolutionary algorithms
and swarm intelligence algorithms have been effectively used
[7]. Meta-heuristics techniques like Particle Swarm
Optimization (PSO) [8], Ant Colony Optimization (ACO) [9],
and Genetic Algorithm (GA) [10] have been efficiently used
for the grid scheduling problem in literature. Meta heuristic
algorithms have been found to be more effective if the initial
population is selected from existing sub optimal scheduling
algorithms like First Come First Serve (FCFS) earlier used for
solving queuing problems [11]. Longest Job First (LJF) and
FCFS as initial schedule was used for the Fuzzy Particle
Swarm based scheduling [12], Shortest Job First (SJF) as
initial scheduler for Swift Scheduler algorithm [13] and SJF
and LJF as initial schedule for GA based scheduler [14] have
been used in literature.

There is increasing interest in Multi-Objective Evolutionary
Algorithm (MOEA) [15] which combines evolutionary
algorithms with theoretical frameworks of multi-criteria
decision making. Though some real world problems are
reduced to a single objective usually it is hard to define a
single objective’s aspects. Defining multiple objectives
provides a better idea of a task. Multi-objective evolutionary
algorithms yield potential solutions, optimal in some sense.
Multi-objective optimization environment’s main challenge is
minimizing distance of generated solutions to Pareto set and
maximizing developed Pareto set diversity [16]. A good
Pareto set is obtained by guiding the search process through
reproduction operators/fitness assignment design strategies.
To diversify, special care is ensured in the selection process.
Similar care prevents non-dominated solutions from getting
lost.

This paper proposes a new scheduling technique based on
Artificial Bee Colony algorithm (ABC) for Grid scheduling.
ABC algorithm is a meta-heuristic approach based on foraging
behaviour of honey bee swarm [17]. It does not require cross
over rate and mutation rate as in case of genetic algorithm to
solve the problem. ABC algorithm has been effectively used
to solve constrained and unconstrained function optimization
problems. ABC’s advantage over other optimization
algorithms includes its [18]:
• Simplicity, flexibility and robustness
• Use of reduced control parameters compared to other

Optimal Grid Scheduling Using Improved Artificial
Bee Colony Algorithm

T. Vigneswari, M. A. Maluk Mohamed

G

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2071

search techniques
• Hybridization ease with other optimization algorithms
• Ability to handle objective cost with stochastic nature
• Easy implementation with basic mathematical/logical

operations.
Section II reviews some of the related works available in

the literature, Section III details about the methods used.
Section IV discusses the simulation environment and the
results obtained, Section V concludes the paper.

II. RELATED WORKS

Job scheduling in a grid environment are based on popular
heuristic algorithms such as min-min, fast greedy, Tabu
Search and Ant System. Heuristic algorithms proposed for job
scheduling rely on static environment and expected value of
execution times. Casanova et al. [19] and Baraglia et al. [20]
proposed heuristic algorithms to solve scheduling issues based
on differing static data, for example, execution time and
system load.

Fidanova et al. [21] presented a heuristic scheduling
algorithm based on ACO, designed to achieve high throughput
computing with load balancing in grid environment. An ACO
algorithm to schedule large-scale work-flows with various
QoS parameters was proposed by [22] which enabled users to
specify their QoS preferences and also define minimum QoS
thresholds for specific applications. A task scheduling strategy
based on Chaotic ACO Algorithm, using the randomness
periodicity and regularity of chaotic motion to improve the
quality of ant's individuals was presented by [23].

Garg and Singh [24] proposed the design/implementation of
hierarchical discrete PSO (H-DPSO) for grid environment’s
dependent task scheduling to minimize makespan and total
cost. In H-DPSO particles are dynamic hierarchically arranged
with good particles lying above and having higher influence
on swarm. Karimi and Motameni [25] presented Tasks
Scheduling in Computational Grid using an H-DPSO where
particles were initialized by Min-Min algorithm. In [26]
searching of particle in each sub-swarm, a scenario for grid
resource allocation was produced. Tao et al. [27] proposed a
rotary hybrid discrete particle swarm optimization (RHDPSO)
algorithm for QoS Constrained Grid Workflow Scheduling
Optimization.

Genetic algorithms minimize average job completion time
through optimal job allocation on each node in application
level scheduling [28]. Khanli et al. [29] presented a Reliable
Job Scheduler using Resource Fault Occurrence History
(RFOH) in Grid Computing. RFOH stored the number of
faults occurred and number of jobs in execution using this
resource. Based on the RFOH information, GA was used to
find an optimum schedule. Kashyap et al. [30] proposed a
security driven scheduling model for large computational grid
using genetic algorithm which helps to incorporate security
into task scheduling.

A binary artificial bee colony (BABC) algorithm for grid
computing was proposed by [31]. The proposed technique
incorporates a flexible ranking strategy (FRS) to improve
balance between exploration and exploitation. Simulation

results for benchmark job scheduling issues showed that the
proposed method’s performance is better than alternatives like
simulated annealing, genetic algorithms, and particle swarm
optimization. Selvi and Umarani [32] presented Comparative
Study of GA and ABC for Job Scheduling. Simulations were
conducted with five different job sets. Numerical results
showed that hybrid GA-ABC job scheduling gave lower
makespan compared to GA and ABC scheduling algorithms.

To overcome local minima problem various hybrid
techniques have been proposed in the literature. Mandloi and
Gupta [33] presented adaptive job scheduling based on ACO
with Genetic Parameter Selection. GA was used to control the
parameters of ACO algorithm. Failure in execution of jobs and
job completion were taken for evaluating the performance of
proposed scheduling algorithm. Evaluation of results proved
that optimization algorithm using GA and PSO was better than
FCFS algorithm. Xue et al. [34] proposed a hybrid clonal
selection genetic algorithm (HCSGA) for solving task
scheduling problem. Hu et al. [35] presented HPSOA Hybrid
Particle Swarm Optimization (HPSO) algorithm to resolve
dynamic web services selection with QoS global optimal in
grid workflow.

Many techniques other than swarm intelligence and
Evolutionary algorithms have been proposed for grid
scheduling. Fidanova et al. [36] introduced a grid computing
tasks scheduling algorithm based on simulated annealing
(SA). Martino [37] designed a two level scheduling system,
with first level being formed by a computing node set – each
with a local scheduling policy – and a second level formed by
super scheduler. The proposed technique used local search
strategy to improve convergence when number of jobs is large
as in the real world operations. Pooranian et al. [38] presented
Group Leader Optimization Algorithm (GLOA) for Job
Scheduling. The capability of Linear Programming (LP) and
GA was combined with LP-driven GA algorithm which aims
the best meta-scheduling that minimizes the combined cost of
all users with negligible time overhead [39]. Rao [40]
proposed a Differential Evolution approach to generate an
optimal scheduling which helps to complete the jobs within a
minimum period of time.

The Heterogeneous Earliest Finish Time (HEFT) algorithm
achieves shorter schedule lengths compared to other
algorithms [41]. In HEFT algorithm, ranking function is used
to compute a value of the subtasks and accordingly scheduled.
Abdelkader and Omara [42] proposed a Clustering Based
HEFT with Duplication (CBHD) for dynamic task scheduling.
The proposed CBHD is a combination of HEFT and triplet
clustering algorithm which achieves better execution time and
load balancing. Tang et al. [43] developed stochastic HEFT
(SHEFT) scheduling algorithm which includes stochastic
attributes to facilitate efficient scheduling precedence
constrained stochastic tasks.

III. METHODOLOGY

In this work a hybrid ABC using modified HEFT based
clustering along with min-min algorithm to create the initial
population is proposed. The block diagram of the proposed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2072

methodology is shown in Fig. 1.

Fig. 1 Block diagram of the Proposed Methodology

A. Generation of Initial Populations

Heterogeneous Earliest Finish Time (HEFT) is a list
scheduling heuristics [41] based on the two components: a
priority function, which is used to order all nodes in the task
graph at compile time; and an objective function which must
be minimized. The priority function used by HEFT is based on
“upward ranking” which is the length of the critical path from
a task to the exit task, including the computation cost of this
task. The upward rank of a task is the sum of the average
execution cost of this task over all available processors and a
maximum computed over all its successors. The terms of this
maximum are the average communication cost of an edge and
the upward rank of the successor.

The Earliest Start Time (EST) is the moment when the
execution of a job can actually begin on a resource. An
execution can start either when a processor becomes available
or when all needed data has arrived on the resource. Adding
the execution cost, the Earliest Finish Time (EFT) of a task is
obtained. HEFT uses the EFT as the objective function for
selecting the best processor for a job [44].

The weights assigned to the nodes are calculated based on
the predicted execution times of the jobs. The weights
assigned to the edges are calculated based on predicted times
of data transferred between the resources. In homogeneous
environments the weights are equal to the predicted times. In
heterogeneous environments, the weights must be
approximated considering different predictions for execution
times on different resources, and for different data transfer
times on different data links.

The ranking phase is performed traversing the workflow
graph upwards, and assigning a rank value to each of the tasks.
Rank value is equal to the weight of the node plus the
execution time of the successors. The successor execution

time is estimated, for every edge being immediate successors
of the node, adding its weight to the rank value of the
successive node, and choosing the maximum of the
summations. A list of resources is arranged, according to the
decreasing rank values.

In the proposed Cluster HEFT (CHEFT), the grid is first
partitioned into clusters for better utilization of the distributed
resources. The grid can be represented by an acyclic graph
G(V,E) where V is a set of nodes which represents the
resources and E is a set of directed edges which represents the
interconnection between the resources. The fan-out of the data
communication equipment is the number of edges incident
from it and the fan-in is the number of edges incident to it.
Primary input is a resource with zero fan-in and primary
output is a resource with zero fan-out. In the given acyclic
graph G, each node in V is assigned weights except for the
primary input resource which is assigned zero weight.

Fig. 2 Cluster formed before HEFT

The resources in the grid are clustered into a sparser

network so that the maximum fan-out is minimized. Thus, the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2073

total number of edges is reduced in the clustered network.
After clustering, the number of edges is equal to the number of
clusters as only one fan out is radiated from each cluster. This
helps to produce a good initial solution for the scheduling
process. Fig. 2 shows a sample clustering of the resources. The
pseudo code of the proposed Cluster HEFT (CHEFT) is shown
in Fig. 3.

Min-Min algorithm schedule tasks by considering the
execution time of the tasks on the resources. The Min-min
algorithm begins with the set U of all unscheduled tasks. The
set of minimum completion times for each of the tasks exiting
in U is found. Next, the task with the overall minimum
completion time from unscheduled tasks is selected and
assigned to the corresponding resource.

Last, the newly scheduled task is removed from U and the
process repeats until all tasks are scheduled [45]. The flow of
min- min algorithm is shown in Fig. 4. In Fig. 4 rj denotes the
expected time which resource Rj will become ready to execute
a task after finishing the execution of all tasks assigned to it.
First, the Cij entries are computed using the Eij (the estimated
execution time of task Ti on resource Rj) and rj values. For
each task Ti, the resource that gives the earliest expected
completion time is determined by scanning the ith row of the
C matrix (composed of the Cij values). The task Tk that has
the minimum earliest expected completion time is determined
and then assigned to the corresponding resource. The matrix C
and vector r are updated and the above process is repeated for
tasks that have not yet been assigned to a resource.

Fig. 3 The proposed HEFT algorithm

CLUSTER(resource, vector, i)
Represent fan-in resources of i as vector
While test vector

If vector>0
i = a randomly selected resource from vector
 j = numbers of resource that can be reached by i
If current cluster size + j <max cluster size
Assign the set S of resource that can be reached by i to the current cluster

Remove the clustered resource from vector
Do While
HEFT(cluster, s)

Store processing capability of each cluster in descending order in s
ܵ௠௔௫ ൌ ∑ ሺ݆ሻ௤ݏ

௝ୀଵ (cluster with q cpu time)
While set of task ݑ ് 0
For each task ݅
Compute the optimal capacity ௜ܵ

 כ
If ∑ ௜ܵ

כ ൌ ܵெ஺௑௜
For each ready task ݅
݅ݏ ′ ൌ ሺ

ௌಾಲ೉

∑ ௌೕ
כ

೔
൐ ௜ܵ

 כ

Else
For each ready task ݅, ݅ݏ ′= ௜ܵ

 כ
 End If

Compute actual t-level
While ready task =׎
݅=task with minimum t-level,݈ݐ௜ ൌ ݅ ݂݋ ݈݁ݒ݈݁ ݐ
K=fastest cluster free at ݈ݐ௜ OR first cluster free after ݈ݐ௜

௜′ݐݏ݁ ൌ ௜ݐݏ݁ ൌ ,௜݈ݐሺܺܣܯ ,ݕݐ݈ܾ݈݅݅ܽ݅ܽݒܽ ܶ݅݉݁௄ሻ p=1, ݏ௜=0
While ௜ܵ ൏ ܵ′௜
If p=1 OR ݁ݐݏ௜ + ݐ௜, p < ݁ݐݏ௜ ௜, p -1 # add clusterݐ + ′

V (p) =k, ݁ݐݏ′௜ ൌ ݌,௜ݐݏ݁ ൌ ݌ ൅ 1, ௜ݏ ൌ ௜ݏ ൅ ሺ݇ሻݏ
 K=next fastest cluster. Free at ݈ݐ௜ OR

Next cluster. free after ݈ݐ௜
If k=null break # all clusters analyzed
 (, ,)i i Kest MAX tl availability Time

Compute b-level of ready task ,w=1
While true
݄ܾ݈ሺݓሻ task with higher b-level
ݎ ൌ with minimum b-level ݇ݏܽݐ
 exists in ݄ܾ݈ break ݎ ݂݅
Remove fastest cluster assigned at task r
Assign it to task ݄ܾ݈ሺݓሻ
Re-evaluate proc. Time of r and ݄ܾ݈ሺݓሻ
Re-evaluate b-level of r and ݄ܾ݈ሺݓሻ

1W W 
 End If

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2074

Fig. 4 Steps in Min-Min scheduling algorithm

B. Scheduling Using Artificial Bee Colony (ABC) Algorithm

Artificial Bee Colony (ABC) algorithm is based on the
social behaviour of honey bee colonies. Honey bees share
information about the location, quantity and quality of foods.
This information sharing activity can be used for resource
management problems of grid scheduling. There are three
types of honey bees in a bee colony. They are Onlooker bees,
employed bees and scout bees. Employed bees search the
locations of food in parallel and inform to other bees by
dancing. Onlooker bees evaluate and select the best solution
among the solutions given by all the employed bees. Scout
bees start a new search for solution. Detailed description of
ABC can be found in [46]-[48].

For each task Ti, which will be processed until completion
in resource Rj, Cij is the time taken to complete the task. An T
x N matrix X=xij where xij=1 if task is assigned to the resource
else 0 is created. We use a single objective function based on
makespan in this work. ABC is based on two natural
processes: recruitment of bees to a food source and source
abandonment. The difference between ABC and other swarm
intelligence algorithms is that in the former, problem’s
solutions are represented by food sources, not bees. In
comparison, bees act as variation operators discovering
(generating) food sources based on existing ones. The
employed bees are equal in number to the number of food
sources with an employed bee being assigned to one source.
On reaching the source, the bee calculates a new solution
(flying to another food source) and retains the best solution
using greedy selection technique. When a source fails to
improve iteratively, it is dumped and replaced by food source
found by scout bee, which in turn involves a random
calculation of a new solution.

Foraging bee’s emergent intelligent behaviour can be
summarized as:
1. During initial foraging phase, bees start exploring

environment randomly to locate a food source.
2. After locating a food source, bee is an employed forager

starting to exploit the discovered source. The employed
bee returns to hive with nectar and unloads it. After
unloading she goes back to discovered source site directly
or shares information about the source through a dance on
the dance floor. When her source is exhausted, the scout
starts a random search for a new source.

3. Onlooker bees in the hive watch dances advertising
profitable sources and choose a source site depending on
dance frequency proportional to source quality.

Classical ABC includes 4 phases [49] [50].

Initialization Phase:

Food sources, with SN population size, are generated
randomly by scout bees. The Artificial Bee number is NP.
Each food source xm is a vector to optimization problem, xm
has D variables and D is searching space dimension of
objective function needing optimization. Initial food sources
are produced randomly by (1)

(0,1)*()m i i ix l rand u l   (1)

where ui and li are upper and lower bound of the objective
function’s solution space, rand (0,1) is a random number
within the range [0,1].

Employed Bee Phase:

Employed bees fly and locate a new food source in the food
source’s neighbourhood. A high quality food source is
selected. A neighbour food source vmi is determined/calculated
by using (2)

()mi mi mi mi kiv x x x  

 (2)

where xk is randomly selected food source, i is randomly
chosen parameter index, mi φ is a random number within
range [-1,1]. The food source fitness is essential to find a
global optimal. Fitness is computed using (3). After which a
greedy selection is applied between xm and vm.

1
, () 0

1 ()()

1 (), () 0

m m
m mm m

m m m m

f x
f xfit x

f x f x

    
   

 (3)

where fm(xm) is the objective function value of xm.

Onlooker Bee Phase:

Onlooker bees see waggle dance in dance area and calculate
food sources profitability and randomly choose a better food
source. Food source quantity is evaluated by profitability and
profitability of all food sources and determined by (4)

 for all tasks Ti in meta-task Mv
 for all resources Rj
 Cij=Eij+rj
 do until all tasks in Mv are mapped
 for each task in Mv find the earliest

find the task Tk with the minimum earliest completion time
 assign task Tk to the resource Rl that gives the earliest completion time
 delete task Tk from Mv
 update rl
 update Cil for all i
end do

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2075

w

is
de

w
nu
of

in

pr
m

w
ne
ch
an
fit

w

av
th

w
w
pr

where fitm(xm) i

Scout Phase:

The scouts ra
abandoned,

efined by (5).

where xm is new
umber within
f objective fun
In the propo

nitial swarm x


roposed HEFT
min algorithm r

In the algor
whose total num
ew source is
hooses a food
nd produces a
tness function

F

where   
verage bandw
he difference in

Onlookers a
whether they a
which a sour
redetermined

 m SN

m

f
P







is the fitness o

:

andomly searc
a new solut

 m ix l ra 

w generated fo
range [0,1], u

nction’s soluti
osed CHMM

ix


 (i = 1, . . .,

T algorithm a
runs until all t
rithm’s second
mber equals h
produced. In

d source with
new source in

n is proposed a

i

F
P

  


1 , Pi are th

width among t
n bandwidth b

are distributed
are to be aba
rce cannot b

limit, sou

1

()

()

m m
N

m m

fit x

fit x



of xm.

ch for new so
tion xm is dis

(0,1)*(iand u 

ood source, ra
ui and li are up
ion space.
-ABC algorit

SN) solutions

and with min-
the tasks are a
d step, for e

half the numb
n the next ste
h probability b
n chosen food
and given by (

 0, ,
1

iM
avg

j

i i i
i

e

B B








he selected c

the selected c
between two h
d to sources,
andoned. If n
be improved
urce is con

lutions. If solu
scovered. Th

)il

and (0,1) is a r
pper and lower

thm’s first st

s are produce

min algorithm
assigned.
every employe
er of food sou
ep, an onlook
based on the

d source site. A
(6).

2

1

clusters, Bavg

clusters, and B
hops.
sources chec

number of cy
is bigger

nsidered exh

Fig. 5

 (4)

ution xi
e xm is

 (5)

random
r bound

tep, the

d using

m. Min-

ed bee,
urces, a
ker bee

fitness
A novel

 (6)

is the

Bi,1+1 is

cked on
cles by
than a

hausted.

Em
sea

res
ind
dis
req
is
ma
40
are
all
ob

the
red
the
pro
pro
co

ach
cla
AB
res

Average makes

mployed bee
arching rando

Simulations
sources were
dependent of
stributed. Usin
quirement of
run five time
akespan value

0 bees of whic
e onlooker be
l the runs the
btained makesp

AVERAG

Average M
Run1

Run2

Run3

Run4

Run5

Fig. 5 shows
e simulation.
duced after 25
e makespan
oposed CHMM
oposed fitnes
nverged withi
A significant
hieved by the
assic ABC. T
BC and propo
spectively.

span RMSE

linked to ex
omly in the pro

 min (ij jx x x 

IV. RESULTS

were condu
e grouped in
each other an
ng dynamic a
resources, th
s and the aver
e is computed
ch 20 bees ar
ees. Totally 25

solution term
pan is shown

TA
GE MAKESPAN FOR

akespan AB
39.

39.

39.

39.

39.

s the average
 It is obser

5 iterations fo
keeps reduc

M-ABC refin
ss function. I
in 100 iteratio
decrease of m
proposed CH

The makespan
osed CHMM-A

xhausted sour
oblem domain

max min)*j jx x r

S AND DISCUS

ucted using
nto 10 clus
nd the resourc
arrival time of
e proposed sc
rage compute
d. The initial
re worker bee
50 iterations a

minated within
graphically in

ABLE I
R THE PROPOSED

BC Propose
.954

.984

.993

.555

.653

makespan of
rved that av
or the propose
cing with th
nes the solutio
In all the fiv
ons.
makespan of 1
HMM-ABC wh
n of all the ru
ABC is depic

rce is now a
n using (7).

rand

SION

50 jobs, an
sters. Each j
ces are dynam
f jobs with di
cheduling alg

ed. During eve
solution start
s and the rem
are performed
n 100 iteration
n Fig. 5 and Ta

CHMM-ABC

ed CHMM-ABC
33.166

33.725

34.167

33.437

34.919

f 5 runs achie
erage makesp
d CHMM-AB

he iteration
on iteratively
e runs the so

11.94% to 16.
hen compared
uns for the cl
cted in Figs. 6

a scout

 (7)

nd the
job is
mically
ifferent
gorithm
ery run
ts with

maining
d but in
ns. The
able I.

eved in
pan is

BC and
as the
for the
olution

99% is
d to the
lassical
6 and 7

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2076

ite
m
sig
A
ac
ut
in
pr
pr

R
e
so
u
rc
e
U
ti
liz
at
io
n
%

Fig. 6 show
erations of AB

makespan duri
gnificantly w

Although, it is
chieves a low
tilization of C
nitial swarm
roposed metho
roposed system

77

78

79

80

81

82

83

84

R
e
so
u
rc
e
 U
ti
liz
at
io
n
 %

ws the makes
BC. Result sh
ing starting i

when the num
s observed in
 makespan in

CHEFT and M
drastically im
od. Fig. 8 sho
m compared w

Fig. 8 Res

ABC
T

Fig

span for all
hows that all
iterations and
mber of iter

n Fig. 7 that
n the proposed
Min-min algori
mproves the
ows the resour
with ABC algo

source utilizatio

Technique Used

Fig. 6 M

g. 7 Makespan

the 5 runs f
the runs had

d makespan r
ations is inc
the initial ru

d CHMM-AB
ithm for creat
performance

rce utilization
orithm.

on

CHMM‐ABC

Makespan of all

of all runs for P

for 100
highest
reduces
creased.
un itself
BC. The
ting the
of the

n for the

tec
for

AB

Pro

Fuz
Alg

off
wo

loc
hu
all
pro
pro
po

runs for ABC

Proposed CHM

Resource uti
chnique. Tabl
r ABC, CHMM

BC

oposed CHMM-A

zzy Particle Swar
gorithm [12]

From Table I

ffers performan
ork in literatur

Grid comput
cated in diffe

uge virtual m
locating differ
oposed an i
oposed HEFT

opulation for th

M-ABC

ilization impr
le II tabulates
M-ABC and t

TA
STANDAR

Av

39

ABC 33

rm 38

II it can be s
nce improvem
re.

V. CON

ting ensures
erent places p
machine. Grid
rent jobs to th
improved gri
T and min mi
he Artificial B

roves by 4.7%
s the standard
technique prop

ABLE II
RD DEVIATION

verage Makespan

.8277

.8830

.0428

seen that prop
ment of 10.93%

NCLUSION

that multiple
physically act
d scheduling
he available re
id schedulin
in algorithm
Bee Colony he

% in the pro
d deviation ac
posed by [12]

n Standard De

0.2079

0.6877

0.6613

posed CHMM
% compared to

e machines t
t as if they a

is the activ
esources. Thi
g algorithm
to obtain the
euristic. Simu

oposed
chieved
.

eviation

M-ABC
o other

though
are one
vity of
s work

using
initial

ulations

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2077

are conducted with 50 jobs, and the resources are grouped into
10 clusters. Simulation result shows a decrease of makespan
of 11.94% to 16.99% by the proposed ABC when compared to
the classic ABC.

REFERENCES
[1] Baker, M., Buyya, R., & Laforenza, D. (2002). Grids and Grid

technologies for wide‐area distributed computing. Software: Practice
and Experience, 32(15), 1437-1466.

[2] Foster, I. (2005). Globus toolkit version 4: Software for service-oriented
systems. In Network and parallel computing (pp. 2-13). Springer Berlin
Heidelberg.

[3] Garg, S. K., Buyya, R., & Siegel, H. J. (2010). Time and cost trade-off
management for scheduling parallel applications on utility grids. Future
Generation Computer Systems, 26(8), 1344-1355.

[4] Casavant, T. L., & Kuhl, J. G. (1988). A taxonomy of scheduling in
general-purpose distributed computing systems. Software Engineering,
IEEE Transactions on, 14(2), 141-154.

[5] Dong, F., & Akl, S. G. (2006). Scheduling algorithms for grid
computing: State of the art and open problems. School of Computing,
Queen’s University, Kingston, Ontario. 1-55.

[6] Lorpunmanee, S., Sap, M. N., Abdullah, A. H., & Chompoo-inwai, C.
(2007). An ant colony optimization for dynamic job scheduling in grid
environment.International Journal of Computer and Information Science
and Engineering, 1(4), 207-214.

[7] Sarath Chandar A P, Priyesh V, & Doreen Hephzibah Miriam D. (2012).
Grid Scheduling using Improved Particle Swarm Optimization with
Digital Pheromones. International Journal of Scientific & Engineering
Research, 3(6).

[8] Kennedy, J., & Eberhart, R. C. (1997, October). A discrete binary
version of the particle swarm algorithm. In Systems, Man, and
Cybernetics, 1997. Computational Cybernetics and Simulation., 1997
IEEE International Conference on (Vol. 5, pp. 4104-4108). IEEE.

[9] Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new
meta-heuristic. In Evolutionary Computation, 1999. CEC 99.
Proceedings of the 1999 Congress on (Vol. 2). IEEE.

[10] Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and
machine learning. Machine learning, 3(2), 95-99.

[11] Cao, J., & Zimmermann, F. (2004, April). Queue scheduling and
advance reservations with COSY. In Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International (p. 63). IEEE.

[12] Liu, H., Abraham, A., & Hassanien, A. E. (2010). Scheduling jobs on
computational grids using a fuzzy particle swarm optimization
algorithm. Future Generation Computer Systems, 26(8), 1336-1343.

[13] Somasundaram, K., & Radhakrishnan, S. (2009). Task Resource
Allocation in Grid using Swift Scheduler. International Journal of
Computers, Communications & Control, 4(2).

[14] Carretero, J., & Xhafa, F. (2006). Use of genetic algorithms for
scheduling jobs in large scale grid applications. Technological and
Economic Development of Economy, 12(1), 11-17.

[15] Grosan, C., Abraham, A., & Helvik, B. (2007). Multiobjective
evolutionary algorithms for scheduling jobs on computational grids. In
International Conference on Applied Computing (pp. 459-463).

[16] Coello Coello, C. A. (2006). Evolutionary multi-objective optimization:
a historical view of the field. Computational Intelligence Magazine,
IEEE, 1(1), 28-36.

[17] Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee
colony (ABC) algorithm. Applied soft computing, 8(1), 687-697.

[18] Bolaji, A. L. A., Khader, A. T., Al-Betar, M. A., & Awadallah, M. A.
(2013). Artificial Bee Colony Algorithm, Its Variants and Applications:
A Survey. Journal of Theoretical & Applied Information Technology,
47(2).

[19] Casanova, H., Legrand, A., Zagorodnov, D., & Berman, F. (2000).
Heuristics for scheduling parameter sweep applications in grid
environments. In Heterogeneous Computing Workshop, 2000.(HCW
2000) Proceedings. 9th (pp. 349-363). IEEE.

[20] Baraglia, R., Ferrini, R., & Ritrovato, P. (2005). A static mapping
heuristics to map parallel applications to heterogeneous computing
systems. Concurrency and Computation: Practice and Experience,
17(13), 1579-1605.

[21] Fidanova, S., & Durchova, M. (2006). Ant algorithm for grid scheduling
problem. In Large-Scale Scientific Computing (pp. 405-412). Springer
Berlin Heidelberg.

[22] Chen, W. N., & Zhang, J. (2009). An ant colony optimization approach
to a grid workflow scheduling problem with various QoS requirements.
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 39(1), 29-43.

[23] Ma, Y., & Wang, Y. (2012, December). Grid task scheduling based on
Chaotic Ant Colony Optimization Algorithm. In Computer Science and
Network Technology (ICCSNT), 2012 2nd International Conference on
(pp. 469-472). IEEE.

[24] Garg, R., & Singh, A. K. (2013). Enhancing the Discrete Particle Swarm
Optimization based Workflow Grid Scheduling using Hierarchical
Structure. International Journal of Computer Network and Information
Security (IJCNIS), 5(6), 18.

[25] Karimi, M., & Motameni, H. (2013). Tasks Scheduling in
Computational Grid using a Hybrid Discrete Particle Swarm
Optimization. International Journal of Grid & Distributed Computing,
6(2).

[26] Zhi-yun, Z., Tian, Z., Yong-tao, Z., & Li-ping, L. (2010, July).
Optimization of grid resource allocation using improved particle swarm
optimization algorithm. In Information Technology and Applications
(IFITA), 2010 International Forum on (Vol. 3, pp. 99-103). IEEE.

[27] Tao, Q., Chang, H., Yi, Y., Gu, C., & Yu, Y. (2009, August). QoS
constrained grid workflow scheduling optimization based on a novel
PSO algorithm. In Grid and Cooperative Computing, 2009. GCC'09.
Eighth International Conference on (pp. 153-159). IEEE.

[28] Gao, Y., Rong, H., & Huang, J. Z. (2005). Adaptive grid job scheduling
with genetic algorithms. Future Generation Computer Systems, 21(1),
151-161.

[29] Khanli, L. M., Far, M. E., & Ghaffari, A. (2010). Reliable job scheduler
using RFOH in grid computing. Journal of Emerging Trends in
Computing and Information Sciences, 1(1), 43-47.

[30] Kashyap, R., & Vidyarthi, D. P. (2011). Security-driven scheduling
model for computational Grid using genetic algorithm. In Proceedings of
the World Congress on Engineering and Computer Science (Vol. 1).

[31] Kim, S. S., Byeon, J. H., Liu, H., Abraham, A., & McLoone, S. (2012).
Optimal job scheduling in grid computing using efficient binary artificial
bee colony optimization. Soft Computing, 1-16.

[32] elvi, V., & Umarani, R.. (2013) “Comparative Study of GA and ABC for
Job Scheduling “, International Journal of Soft Computing and
Engineering (IJSCE), ISSN: 2231-2307, Volume-2, Issue-6.

[33] Mandloi, S., & Gupta, H. (2013). Adaptive job Scheduling for
Computational Grid based on Ant Colony Optimization with Genetic
Parameter Selection. International Journal. of Advanced Computer
Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970) Volume-
3 Number-1 Issue-9.

[34] Xue, X., & Gu, Y. (2010). Global optimization based on hybrid clonal
selection genetic algorithm for task scheduling. J Comput Inf Syst, 6(1),
253-261.

[35] Hu, C., Wu, M., Liu, G., & Xie, W. (2007, August). QoS scheduling
algorithm based on hybrid particle swarm optimization strategy for grid
workflow. In Grid and Cooperative Computing, 2007. GCC 2007. Sixth
International Conference on (pp. 330-337). IEEE.

[36] Fidanova, S. (2006, October). Simulated annealing for grid scheduling
problem. In Modern Computing, 2006. JVA'06. IEEE John Vincent
Atanasoff 2006 International Symposium on (pp. 41-45). IEEE.

[37] Di Martino, V., & Mililotti, M. (2004). Sub optimal scheduling in a grid
using genetic algorithms. Parallel computing, 30(5), 553-565.

[38] Pooranian, Z., Shojafar, M., Abawajy, J. H., & Singhal, M. (2013).
GLOA: a new job scheduling algorithm for grid computing.
International journal of interactive multimedia and artificial intelligence,
2(1), 59-64.

[39] Garg, S. K., Konugurthi, P., & Buyya, R. (2011). A linear programming-
driven genetic algorithm for meta-scheduling on utility grids.
International Journal of Parallel, Emergent and Distributed Systems,
26(6), 493-517.

[40] Rao, C. S., & Babu, B. R. (2013). DE Based Job Scheduling in Grid
Environments. Journal of Computer Networks, 1(2), 28-31.

[41] Zhao, H., & Sakellariou, R. (2003). An experimental investigation into
the rank function of the heterogeneous earliest finish time scheduling
algorithm. In Euro-Par 2003 Parallel Processing (pp. 189-194). Springer
Berlin Heidelberg.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2078

[42] Abdelkader, D. M., & Omara, F. (2012). Dynamic task scheduling
algorithm with load balancing for heterogeneous computing system.
Egyptian Informatics Journal, 13(2), 135-145.

[43] Tang, X., Li, K., Liao, G., Fang, K., & Wu, F. (2011). A stochastic
scheduling algorithm for precedence constrained tasks on Grid. Future
Generation Computer Systems, 27(8), 1083-1091.

[44] Suter, F., Desprez, F., & Casanova, H. (2004, January). From
heterogeneous task scheduling to heterogeneous mixed parallel
scheduling. In Euro-Par 2004 Parallel Processing (pp. 230-237).
Springer Berlin Heidelberg.

[45] Braun, T.D., H. Jay Siegel, N. Beck, L.L. Boloni, M. Maheswaran, A.I.
Reuther, J.P. Robertson, M.D. Theys and B. Yao, (2001). A Comparison
of Eleven Static Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems. Journal of Parallel
and Distributed Computing, 61: 810-837.

[46] Kıran, M. S., & Gündüz, M. (2012). A novel artificial bee colony-based
algorithm for solving the numerical optimization problems. International
Journal of Innovative Computing, Information & Control, 8(9), 6107-
6121.

[47] Saab, S. M., El-Omari, N. K. T., & Hussein, H. O. (2009). Developing
optimization algorithm using artificial bee colony system. Ubiquitous
Computing and Communication Journal, 4(3), 391-396.

[48] Mezura-Montes, E., Damián-Araoz, M., & Cetina-Domingez, O. (2010,
July). Smart flight and dynamic tolerances in the artificial bee colony for
constrained optimization. In Evolutionary Computation (CEC), 2010
IEEE Congress on (pp. 1-8). IEEE.

[49] Yan, G., & Li, C. (2011). An effective refinement artificial bee colony
optimization algorithm based on chaotic search and application for pid
control tuning. J Comput Inf Syst, 7(9), 3309-3316.

[50] Karaboga, D., & Akay, B. (2009). Artificial bee colony (ABC), harmony
search and bees algorithms on numerical optimization. In Innovative
Production Machines and Systems Virtual Conference.

