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Yang-Lee Edge Singularity of the Infinite-Range
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Abstract—The Ising ferromagnet, consisting of magnetic spins, is
the simplest system showing phase transitions and critical phenomena
at finite temperatures. The Ising ferromagnet has played a central role
in our understanding of phase transitions and critical phenomena.
Also, the Ising ferromagnet explains the gas-liquid phase transitions
accurately. In particular, the Ising ferromagnet in a nonzero magnetic
field has been one of the most intriguing and outstanding unsolved
problems. We study analytically the partition function zeros in the
complex magnetic-field plane and the Yang-Lee edge singularity of
the infinite-range Ising ferromagnet in an external magnetic field.
In addition, we compare the Yang-Lee edge singularity of the
infinite-range Ising ferromagnet with that of the square-lattice Ising
ferromagnet in an external magnetic field.

Keywords—Ising ferromagnet, Magnetic field, Partition function
zeros, Yang-Lee edge singularity.

I. INTRODUCTION

PHASE transitions and critical phenomena are the most
universal phenomena in nature. The two-dimensional

Ising ferromagnet, consisting of magnetic spins, is the simplest
system showing phase transitions and critical phenomena
at finite temperatures. The Ising ferromagnet has played a
central role [1] in our understanding of phase transitions and
critical phenomena since the Onsager (Nobel prize winner in
1968) solution [2] of the square-lattice Ising ferromagnet in
the absence of an external magnetic field. In addition, the
Ising ferromagnet explains the gas-liquid phase transitions
exactly. However, the Ising ferromagnet in a nonzero magnetic
field has been one of the most intriguing and outstanding
unsolved problems except for the trivial one-dimensional Ising
ferromagnet [3]−[6].

Phase transitions and critical phenomena can be understood
based on the concept of partition function zeros. Yang and
Lee (Nobel prize winners in 1957) [7] proposed a rigorous
mechanism for the occurrence of phase transitions in the
thermodynamic limit and yielded an insight into the unsolved
problem of the ferromagnetic Ising ferromagnet at arbitrary
temperature (T ) in a magnetic field (B) by introducing the
concept of the zeros of the grand partition function Z(T,B)
(for fluid systems, Z(T, μ) as a function of chemical potential
μ) in the complex magnetic-field (for fluid systems, chemical
potential) plane (the so-called Yang-Lee zeros). They [8] also
formulated the celebrated circle theorem, which states that the
Yang-Lee zeros of the Ising ferromagnet lie on the unit circle
x0 = eiθ in the complex fugacity (x = e−2B/kBT ) plane.
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At the Curie temperature Tc, Yang-Lee zeros cut the positive
real axis at the point xc = 1 (Bc = 0) in the thermodynamic
limit. The spontaneous magnetization m0 is determined by the
density of Yang-Lee zeros g(θ) on the positive real axis, i.e.,
m0 = 2πg(θ = 0). Above Tc, Yang-Lee zeros do not cut the
positive real axis in the thermodynamic limit. There is a gap
in the distribution of zeros around the positive real axis; that
is, g(θ) = 0 for |θ| < θe. For T > Tc, the Yang-Lee zeros at
θ = ±θe are called the Yang-Lee edge singularities, and their
locations depend on temperature. It is well known that θe = 0
at Tc and θe = π at T = ∞ [9]. However, for Tc < T <
∞, the location of the Yang-Lee edge singularity θe(T ) has
never been determined except for the one-dimensional Ising
ferromagnet.

The Yang-Lee edge singularity provides key information for
finding the unknown equation of state of the square-lattice
Ising ferromagnet in a nonzero magnetic field. Therefore, the
Yang-Lee edge singularity has been studied extensively for
the Ising ferromagnet [10]−[20]. Kortman and Griffiths [10]
carried out the first systematic investigation of Yang-Lee
zeros for the the square-lattice Ising ferromagnet by using
a high field, high-temperature series expansion. They found
that the density of Yang-Lee zeros for the square-lattice Ising
ferromagnet diverges at the Yang-Lee edge singularity θe for
high temperatures. Fisher [11] proposed the ideas that the Yang
Lee edge singularity could be thought of as a new second-
order phase transition with associated critical exponents and
that the Yang-Lee edge singularity could be considered as a
conventional critical point. The critical point of the Yang-Lee
edge singularity is associated with a φ3 theory. The crossover
dimension of the Yang-Lee edge singularity is dc = 6. The
Yang-Lee edge singularity has also been investigated for the
two-dimensional Ising ferromagnet FeCl2 in axial magnetic
fields experimentally [17].

Following Yang and Lee’s idea, Fisher [21] introduced the
partition function zeros in the complex temperature plane
(the so-called Fisher zeros) utilizing the Onsager solution of
the square-lattice Ising model in the absence of an external
magnetic field. Fisher also showed that the partition function
zeros in the complex temperature plane of the square-lattice
Ising model determine its ferromagnetic and antiferromagnetic
critical temperatures in the absence an external magnetic field
at the same time. However, there exists no circle theorem for
partition function zeros in the complex temperature plane, and
studying partition function zeros in the complex temperature
plane is a difficult task.

By calculating the partition function zeros and examining
the behavior of the first partition function zero (partition
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function zero closest to the positive real axis), phase transitions
and critical phenomena can be much more clearly understood.
Because the partition function zeros of a given system provide
valuable information on its exact solution, earlier studies on
partition function zeros were mainly performed in the fields
of mathematical physics and rigorous statistical mechanics.
Nowadays, the concept of partition function zeros is applied
to all fields of physics from particle physics to biophysics, and
they are popularly used as one of the most effective methods
to determine the critical points and exponents [22]−[58].

In this work, we study analytically the partition function
zeros in the complex magnetic-field plane and the Yang-Lee
edge singularity of the infinite-range Ising ferromagnet in an
external magnetic field. Also, we compare the Yang-Lee edge
singularity of the infinite-range Ising ferromagnet with that of
the square-lattice Ising ferromagnet in an external magnetic
field.

II. INFINITE-RANGE ISING MODEL

The infinite-range Ising ferromagnet with N (magnetic)
spins in an external magnetic field B is defined by the
Hamiltonian [58]−[60]

H = − J

N

N−1∑
i=1

N∑
j=i+1

σiσj −B
N∑
i=1

σi, (1)

where σi = ±1, J is the coupling constant (J > 0), and the
first term indicates a sum over all possible bonds

Nb =
1

2
N(N − 1) (2)

between two different spins σi and σj . If there is a spin
configuration with r down (σi = −1) spins and N − r up
(σi = 1) spins, the magnetization M is defined by

M ≡
N∑
i=1

σi = (N − r)− r = N − 2r. (3)

Also, the first sum of the infinite-range Ising ferromagnet is
given by

N−1∑
i=1

N∑
j=i+1

σiσj

=
1

2
r(r − 1) +

1

2
(N − r)(N − r − 1)− r(N − r)

=
1

2
(M2 −N). (4)

Therefore, the Hamiltonian for a spin configuration with r
down spins and N − r up spins is simply expressed as

H = − J

2N
(M2 −N)−BM. (5)

The partition function (a sum over all 2N spin states) of the
infinite-range Ising ferromagnet

Z =
∑
{σn}

e−βH, (6)

TABLE I
PARTITION FUNCTION ZEROS IN THE COMPLEX MAGNETIC-FIELD

(x = e−2βB ) PLANE OF THE INFINITE-RANGE ISING FERROMAGNET FOR

c B

−0.991616971016042− 0.129212161939080i

−0.991616971016042 + 0.129212161939080i

−0.925154056403051− 0.379591849123476i

−0.925154056403051 + 0.379591849123476i

−0.795430982323641− 0.606044183504509i

−0.795430982323641 + 0.606044183504509i

−0.608834977858797− 0.793296898856713i

−0.608834977858797 + 0.793296898856713i

−0.374912562575763− 0.927060176268442i

−0.374912562575763 + 0.927060176268442i

−0.106367073277723− 0.994326931005256i

−0.106367073277723 + 0.994326931005256i

0.180851554735243− 0.983510404189933i

0.180851554735243 + 0.983510404189933i

0.467185921263300− 0.884159100486650i

0.467185921263300 + 0.884159100486650i

0.728276230555473− 0.685283687247779i

0.728276230555473 + 0.685283687247779i

0.930316724674649− 0.366757129161293i

0.930316724674649 + 0.366757129161293i

where β = 1/kBT , kB is the Boltzmann constant, and T is
temperature, can be written as

Z =
N∑
r=0

(
N

r

)
exp

[
βJ

2N
(M2 −N) + βBM

]
. (7)

And the free energy F is given by

F = −kBT lnZ. (8)

III. PARTITION FUNCTION ZEROS

The partition function is also expressed as

Z = exp

[
βJ

2N
(N2 −N) + βBN

] N∑
r=0

(
N

r

)
yr(N−r)xr, (9)

where y is the low-temperature variable and x is the fugacity
variable, defined by

y ≡ exp

[
− 2βJ

N

]
(10)

and
x ≡ exp[−2βB]. (11)

Then, the reduced partition function

Z̄ =
N∑
r=0

(
N

r

)
yr(N−r)xr (12)

is a polynomial in variables y and x. That is, equation (12)
determines the partition function zeros of the infinite-range
Ising ferromagnet.

N = 20 AT THE CURIE TEMPERATURE T = J/k
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TABLE II
YANG-LEE EDGE SINGULARITY xe OF THE INFINITE-RANGE ISING

FERROMAGNET AT THE CURIE TEMPERATURE Tc = J/kB FOR

N xe

20 0.930316724674649 + 0.366757129161293i

30 0.961275775929932 + 0.275588248316772i

40 0.974554786275155 + 0.224149433521897i

50 0.981653381379761 + 0.190674169267056i

60 0.985966142256138 + 0.166945399231453i

70 0.988816229521337 + 0.149139076821627i

80 0.990815402977553 + 0.135221437732441i

90 0.992281546821177 + 0.124005370198921i

100 0.993394561919970 + 0.114748613707665i

110 0.994263131699981 + 0.106961791973334i

120 0.994956396771223 + 0.100308367168573i

130 0.995520225970465 + 0.094548821693947i

140 0.995986125280646 + 0.089507755241911i

150 0.996376378112817 + 0.085053589805401i

160 0.996707144074488 + 0.081085565613602i

Table I shows the the partition function zeros in the complex
magnetic-field (x = e−2βB) plane of the infinite-range Ising
ferromagnet for N = 20 at the Curie temperature Tc = J/kB ,
obtained from (12). As shown in the table, the partition
function zeros always have their complex conjugates to make
the real partition function and the number of the partition
function zeros is equal to N . The partition function zero
xe = 0.930316724674649+0.366757129161293i (its complex
conjugate 0.930316724674649 − 0.366757129161293i) lies
closest to the positive real axis, and it is the Yang-Lee edge
singularity. Table II shows the Yang-Lee edge singularity xe of
the infinite-range Ising ferromagnet at the Curie temperature
Tc = J/kB for N = 20 ∼ 160.

IV. EQUATION OF STATE

The density of state Ω(M) for the infinite-range Ising
ferromagnet is given by

Ω(M) =

(
N

r

)
=

N !

(N − r)!r!

=
N !

[ 12 (N +M)]![ 12 (N −M)]!
. (13)

And the unitless entropy S(M) is written as

S(M) = lnΩ = lnN !− ln

[
1

2
(N +M)

]
!− ln

[
1

2
(N −M)

]
!.

(14)
For large N , using Stirling’s formula for the factorial

lnN ! = N lnN −N, (15)

we obtain

d

dM
ln

[
1

2
(N ±M)

]
! = ±1

2
ln

[
1

2
(N ±M)

]
. (16)

TABLE III
EXACT VALUES FOR THE YANG-LEE EDGE SINGULARITY xe(T ) AND ITS
ARGUMENT θe(T ) OF THE INFINITE-RANGE ISING FERROMAGNET IN THE

THERMODYNAMIC LIMIT

T/Tc xe θe

1.5 0.95877114 + 0.28417935i 0.288150

2 0.84147098 + 0.54030231i 0.570796

2.5 0.70216810 + 0.71201121i 0.792358

3 0.56709298 + 0.82365378i 0.967824

3.5 0.44448284 + 0.89578736i 1.110199

4 0.33577382 + 0.94194264i 1.228370

5 0.15586085 + 0.98777902i 1.414297

10 −0.32148301 + 0.94691535i 1.898092

20 −0.63180497 + 0.77512739i 2.254676

Thus, the derivative of the entropy is simply given by

d

dM
S(M) =

1

2
ln

N −M

N +M
. (17)

The restricted partition function z(M) is defined by

z(M) ≡
(
N

r

)
exp

[
βJ

2N
(M2 −N) + βBM

]
. (18)

Then, the derivative of lnZ(M) is written as

d

dM
z(M) =

1

2
ln

N −M

N +M
+

βJM

N
+ βB

=
1

2
ln

1−m

1 +m
+ βJm+ βB, (19)

where m ≡ M
N is the magnetization per volume. The optimal

condition
d

dM
z(M) = 0 (20)

yields

ln
1−m

1 +m
= −2β(Jm+B). (21)

Finally, we reach the equation of state

m = tanhβ(Jm+B) (22)

for the infinite-range Ising ferromagnet in the thermodynamic
limit [58]−[60].

V. YANG-LEE EDGE SINGULARITY

From the equation of state, the critical temperature Tc (the
so-called Curie temperature) for B = 0 is given by

βcJ = 1, (23)

equivalently,

Tc =
J

kB
. (24)

Differentiating the equation of state with respect to m, we
obtain the useful relation

1 = βJ [1− tanh2 β(Jm+B)] = βJ(1−m2), (25)

N = 20 ∼ 160
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TABLE IV
ARGUMENT OF THE YANG-LEE EDGE SINGULARITY FOR THE

SQUARE-LATTICE ISING FERROMAGNET IN THE THERMODYNAMIC LIMIT,
ACCURATELY ESTIMATED FROM THE EXACT PARTITION FUNCTION ZEROS

T/Tc θe

1.5 0.18544± 0.00009

2 0.42578± 0.00004

2.5 0.63180± 0.00003

3 0.80234± 0.00002

3.5 0.94444± 0.00002

4 1.06449± 0.00002

5 1.25667± 0.00001

10 1.771000± 0.000008

20 2.159285± 0.000005

from which the spontaneous magnetization (per volume)

m0(T ) = ±
√
1− kBT

J
= ±

√
1− T

Tc
(26)

is derived.
In the thermodynamic limit, the equation of state determines

the Yang-Lee edge singularity xe of the infinite-range Ising
ferromagnet according to the following equation

xe(T ) = exp[−2βBe] = exp[2(βJm0 − tanh−1 m0)] (27)

for T > Tc. Hence, the argument of the Yang-Lee edge
singularity is given by

θe(T ) = −i lnxe(T ). (28)

Table III shows the exact values for the Yang-Lee edge singu-
larity and its argument of the infinite-range Ising ferromagnet
in the thermodynamic limit. As shown in the table, the Yang-
Lee edge singularity is not far from the point x = 1 (θ = 0)
in low temperature. As temperature increases, it moves away
and approaches x = −1 (θ = π).

For comparison, we also show the argument of the Yang-
Lee edge singularity for the square-lattice Ising ferromagnet in
the thermodynamic limit, accurately estimated from the exact
partition function zeros for finite latices [20], as shown in
Table IV. The error estimates are twice the difference between
the (n−1,1) and (n−1,2) approximants of the Bulirsch-Stoer
extrapolation method [61]. Until now, the exact values for the
Yang-Lee edge singularity and its argument of the square-
lattice Ising ferromagnet have never been known. Clearly, we
notice that the argument of the Yang-Lee edge singularity of
the infinite-range Ising ferromagnet is larger than that of the
square-lattice Ising ferromagnet, as shown in the table.

VI. CONCLUSION

The Ising ferromagnet, consisting of magnetic spins, is
the simplest system showing phase transitions and critical
phenomena at finite temperatures. The Ising ferromagnet in a
nonzero magnetic field has been one of the most intriguing
and outstanding unsolved problems. The partition function

zeros in the complex magnetic-field plane (shortly, the Yang-
Lee zeros) of the Ising ferromagnet has played a central role
in understanding its properties in a nonzero magnetic field.
Above the Curie temperature, the Yang-Lee zero at the edge
of the zero distribution of the Ising ferromagnet is called the
Yang-Lee edge singularity. The Yang-Lee edge singularity has
been indispensable in investigating the unknown properties of
the Ising ferromagnet in a nonzero magnetic field. We have
studied analytically the partition function zeros in the complex
magnetic-field plane and the Yang-Lee edge singularity of the
infinite-range Ising ferromagnet in an external magnetic field.
In addition, we have compared the Yang-Lee edge singularity
of the infinite-range Ising ferromagnet with that of the square-
lattice Ising ferromagnet in an external magnetic field.

ACKNOWLEDGMENT

The author is grateful to Prof. R. J. Creswick for very useful
discussions. This research was supported by Basic Science
Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education (grant
number NRF-2014R1A1A2056127).

REFERENCES

[1] C. Domb, The Critical Point, Taylor and Francis, London, 1996.
[2] L. Onsager, “Crystal statistics. I. A two-dimensional model with an

order-disorder transition”, Physical Review, 65 (1944) 117-149.
[3] S.-Y. Kim, “Yang-Lee zeros of the one-dimensional Q-state Potts

model”, Journal of the Korean Physical Society, 44 (2004) 495-500.
[4] S.-Y. Kim, “Fisher zeros and Potts zeros of the Q-state Potts model in

a magnetic field”, Journal of the Korean Physical Society, 45 (2004)
302-309.

[5] J. Lee, “Low-temperature behavior of the finite-size one-dimensional
Ising model and the partition function zeros”, Journal of the Korean
Physical Society, 65 (2014) 676-683.

[6] S.-Y. Kim, “Generalized Schottky anomaly”, Journal of the Korean
Physical Society, 65 (2014) 970-972.

[7] C. N. Yang and T. D. Lee, “Statistical theory of equations of state
and phase transitions. I. Theory of condensation”, Physical Review, 87
(1952) 404-409.

[8] T. D. Lee and C. N. Yang, “Statistical theory of equations of state and
phase transitions. II. Lattice gas and Ising model”, Physical Review, 87
(1952) 410-419.

[9] S.-Y. Kim and R. J. Creswick, “Yang-Lee zeros of the Q-state Potts
model in the complex magnetic field plane”, Physical Review Letters,
81 (1998) 2000-2003.

[10] P. J. Kortman and R. B. Griffiths, “Density of zeros on the Lee-Yang
circle for two Ising ferromagnets”, Physical Review Letters, 27 (1971)
1439-1442.

[11] M. E. Fisher, “Yang-Lee edge singularity and φ3 field theory”, Physical
Review Letters, 40 (1978) 1610-1613.

[12] G. A. Baker, M. E. Fisher, and P. Moussa, “Yang-Lee edge singularity
in the hierarchical model”, Physical Review Letters, 42 (1979) 615-618.

[13] K. Uzelac, P. Pfeuty, and R. Jullien, “Yang-Lee edge singularity from a
real-space renormaliztion-group method”, Physical Review Letters, 43
(1979) 805-808.

[14] G. Parisi and N. Sourlas, “Critical behavior of branched polymers and
the Lee-Yang edge singularity”, Physical Review Letters, 46 (1981) 871-
874.

[15] D. Dhar, “Exact solution of a directed-site animals-enumeration problem
in three dimensionals”, Physical Review Letters, 51 (1983) 853-856.

[16] J. L. Cardy, “Conformal invariance and the Yang-Lee edge singularity
in two dimensionals”, Physical Review Letters, 54 (1985) 1354-1356.

[17] C. Binek, “Density of zeros on the Lee-Yang circle obtained from
magnetization data of a two-dimensional Ising ferromagnet”, Physical
Review Letters, 81 (1998) 5644-5647.

[18] S.-Y. Kim, “Density of Yang-Lee zeros and Yang-Lee edge singularity
for the antiferromagnetic Ising model”, Nuclear Physics B, 705 (2005)
504-520.

FOR FINITE LATICES



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:2, 2015

84

[19] S.-Y. Kim, “Density of Yang-Lee zeros for the Ising ferromagnet”,
Physical Review E, 74 (2006) 011119:1-7.

[20] S.-Y. Kim, “Yang-Lee edge singularity of the square-lattice Ising ferro-
magnet”, Journal of the Korean Physical Society, 59 (2011) 2205-2208.

[21] M. E. Fisher, “The nature of critical points,” in Lectures in Theoretical
Physics, vol. 7c, W. E. Brittin, Ed. Boulder: University of Colorado
Press, 1965, pp. 1-159.

[22] R. J. Creswick and S.-Y. Kim, “Finite-size scaling of the density of zeros
of the partition function in first- and second-order phase transitions”,
Physical Review E, 56 (1997) 2418-2422.

[23] S.-Y. Kim and R. J. Creswick, “Fisher zeros of the Q-state Potts model
in the complex temperature plane for nonzero external magnetic field”,
Physical Review E, 58 (1998) 7006-7012.

[24] R. J. Creswick and S.-Y. Kim, “Microcanonical transfer matrix study
of the Q-state Potts model”, Computer Physics Communications, 121
(1999) 26-29.

[25] S.-Y. Kim and R. J. Creswick, “Exact results for the zeros of the partition
function of the Potts model on finite lattices”, Physica A, 281 (2000)
252-261.

[26] S.-Y. Kim, R. J. Creswick, C.-N. Chen, and C.-K. Hu, “Partition function
zeros of the Q-state Potts model for non-integer Q”, Physica A, 281
(2000) 262-267.

[27] S.-Y. Kim and R. J. Creswick, “Density of states, Potts zeros, and Fisher
zeros of the Q-state Potts model for continuous Q”, Physical Review
E, 63 (2001) 066107:1-12.

[28] W. Janke and R. Kenna, “The strength of first and second order phase
transitions from partition function zeroes”, Journal of Statistical Physics,
102 (2001) 1211-1227.

[29] B. P. Dolan, W. Janke, D. A. Johnston, and M. Stathakopoulos, “Thin
Fisher zeros”, Journal of Physics A, 34 (2001) 6211-6223.

[30] S.-Y. Kim, “Partition function zeros of the Q-state Potts model on the
simple-cubic lattice”, Nuclear Physics B, 637 (2002) 409-426.

[31] S.-Y. Kim, “Yang-Lee zeros of the antiferromagnetic Ising model”,
Physical Review Letters, 93 (2004) 130604:1-4.

[32] S.-Y. Kim, “Density of the Fisher zeros for the three-state and four-state
Potts models”, Physical Review E, 70 (2004) 016110:1-5.

[33] S.-Y. Kim, “Fisher zeros of the Ising antiferromagnet in an arbitrary
nonzero magnetic field plane”, Physical Review E, 71 (2005) 017102:1-
4.

[34] I. Bena, M. Droz, and A. Lipowski, “Statistical mechanics of
equilibrium and nonequilbrium phase transitions: The Yang-Lee formal-
ism”, International Journal of Modern Physics B, 19 (2005) 4269-4329.

[35] S.-Y. Kim, “Honeycomb-lattice antiferromagnetic Ising model in a
magnetic field”, Physics Letters A, 358 (2006) 245-250.

[36] J. L. Monroe and S.-Y. Kim, “Phase diagram and critical exponent ν for
the nearest-neighbor and next-nearest-neighbor interaction Ising model”,
Physical Review E, 76 (2007) 021123:1-5.

[37] C.-O. Hwang, S.-Y. Kim, D. Kang, and J. M. Kim, “Ising antiferro-
magnets in a nonzero uniform magnetic field”, Journal of Statistical
Mechanics, 7 (2007) L05001:1-8.

[38] X.-Z. Wang, “Yang-Lee circle theorem for an ideal pseudospin-1/2 Bose
gas in an arbitrary external potential and in an external magnetic field”,
Physica A, 380 (2007) 163-171.

[39] S.-Y. Kim, C.-O. Hwang, and J. M. Kim, “Partition function zeros of
the antiferromagnetic Ising model on triangular lattice in the complex
temperature plane for nonzero magnetic field”, Nuclear Physics B, 805
(2008) 441-450.

[40] N. Ananikian, L. Ananikyan, R. Artuso, and K. Sargsyan, “The partition
function zeros for a Potts model of helix-coil transition with three-site
interactions”, Physica A, 387 (2008) 5433-5439.

[41] S.-Y. Kim, “Specific heat of the square-lattice Ising antiferromagnet in
a magnetic field”, Journal of Physical Studies, 13 (2009) 4006:1-3.

[42] P. R. Crompton, “The partition function zeroes of quantum critical
points”, Nuclear Physics B, 810 (2009) 542-562.

[43] S.-Y. Kim, “Partition function zeros of the square-lattice Ising model
with nearest- and next-nearest-neighbor interactions”, Physical Review
E, 81 (2010) 031120:1-7.

[44] S.-Y. Kim, “Partition function zeros of the honeycomb-lattice Ising
antiferromagnet in the complex magnetic-field plane”, Physical Review
E, 82 (2010) 041107:1-7.

[45] S.-Y. Kim, “Honeycomb-lattice Ising model in a nonzero magnetic field:
Low-temperature series analysis and partition function zeros”, Journal
of the Korean Physical Society, 56 (2010) 1051-1054.

[46] J. H. Lee, S.-Y. Kim, and J. Lee, “Exact partition function zeros and
the collapse transition of a two-dimensional lattice polymer”, Journal of
Chemical Physics, 133 (2010) 114106:1-6.

[47] J. H. Lee, H. S. Song, J. M. Kim, and S.-Y. Kim, “Study of a square-
lattice Ising superantiferromagnet using the Wang-Landau algorithm and
partition function zeros”, Journal of Statistical Mechanics, 10 (2010)
P03020:1-9.

[48] C.-O. Hwang and S.-Y. Kim, “Yang-Lee zeros of triangular Ising
antiferromagnets”, Physica A, 389 (2010) 5650-5654.

[49] D. Dalmazi and F. L. Sa, “Generalized partition function zeros of 1D
spin models and their critical behavior at edge singularities”, Journal of
Physics A, 43 (2010) 255002:1-20.

[50] J. H. Lee, S.-Y. Kim, and J. Lee, “Collapse transition of a square-lattice
polymer with next nearest-neighbor interaction”, Journal of Chemical
Physics, 135 (2011) 204102:1-4.

[51] S.-Y. Kim, “Triangular-lattice Ising model in a nonzero magnetic field”,
Journal of the Korean Physical Society, 58 (2011) 5-8.

[52] S.-Y. Kim, “Specific heat and partition function zeros of the three-state
Potts model”, Journal of the Korean Physical Society, 59 (2011) 2980-
2983.

[53] J. H. Lee, S.-Y. Kim, and J. Lee, “Exact partition function zeros of
a polymer on a simple cubic lattice”, Physical Review E, 86 (2012)
011802:1-7.

[54] J. L. Lebowitz, D. Ruelle, and E. R. Speer, “Location of the Lee-Yang
zeros and absence of phase transitions in some Ising spin systems”,
Journal of Mathematical Physics, 53 (2012) 095211:1-13.

[55] S.-Y. Kim, “Exact partition functions of the Ising model on L×L square
lattices with free boundary conditions up to L = 22”, Journal of the
Korean Physical Society, 62 (2013) 214-219.

[56] J. H. Lee, S.-Y. Kim, and J. Lee, “Partition function zeros of a
square-lattice homopolymer with nearest- and next-nearest-neighbor
interactions”, Physical Review E, 87 (2013) 052601:1-6.

[57] J. Lee, “Exact partition function zeros of the Wako-Saito-Munoz-Eaton
protein model”, Physical Review Letters, 110 (2013) 248101:1-5.

[58] Z. Glumac and Uzelac, “Yang-Lee zeros and the critical behavior of the
infinite-range two- and three-state Potts models”, Physical Review E, 87
(2013) 022140:1-10.

[59] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic
Press, London, 1982.

[60] H. Gould and J. Tobochnik, Statistical and Thermal Physics with
Computer Applications, Princeton University Press, Princeton, 2010.

[61] R. Bulirsch and J. Stoer, “Fehlerabschätzungen und extrapolation mit
rationalen funktionen bei verfahren vom Richardson-typus”, Numerische
Mathematik, 6 (1964) 413-427; “Numerical treatment of ordinary
differential equations by extrapolation methods”, Numerische Mathe-
matik, 8 (1966) 1-13.


