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 
Abstract—In this paper, Bayesian online inference in models of 

data series are constructed by change-points algorithm, which 
separated the observed time series into independent series and study 
the change and variation of the regime of the data with related 
statistical characteristics. variation of statistical characteristics of time 
series data often represent separated phenomena in the some 
dynamical system, like a change in state of brain dynamical reflected 
in EEG signal data measurement or a change in important regime of 
data in many dynamical system. In this paper, prediction algorithm 
for studying change point location in some time series data is 
simulated. It is verified that pattern of proposed distribution of data 
has important factor on simpler and smother fluctuation of hazard 
rate parameter and also for better identification of change point 
locations. Finally, the conditions of how the time series distribution 
effect on factors in this approach are explained and validated with 
different time series databases for some dynamical system.  

  
Keywords—Time series, fluctuation in statistical characteristics, 

optimal learning.  

I. INTRODUCTION 

ENERALLY making inferences about the state of the 
dynamical systems and time evolution state of system is 

one of the most important tasks in many computational 
methods like mechanical engineering or other major such as 
neuroscience. For instance, uncertainty processing in signals 
for perception and learning is important for modeling the 
cognition process. However, such a conclusion would be 
difficult in noisy and dynamical signals. Understanding of 
how such integration between events, information and sources 
of uncertainty is built, is the main objective of learning theory. 
In the field of neuroscience, it is common to fit the learning 
rate parameters that have been shown how to replace the old 
data to the new information. In other words, they try to 
determine the factors affecting the modeling [1]. 

Time-varying series data is the key important factor for 
modeling of complex dynamical systems. For example, the 
overall mechanism of learning rate should be set up so that the 
organism is conserving its ability to predict the future. 
Recently several neural network models are proposed to 
explain the adaptive behavior of theses mechanism [1]. 
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Change-point prediction in different structure algorithms 
have been developed and applied to a variety of data series 
such as, process control [2], [3], disease demographics [4], 
DNA [5], [6], EEG signal processing [7]-[9]. However, most 
of this analysis has been applied and limited to offline 
inference, which uses the entire data series for prediction [10], 
[11]. Online methods also have practical limitations, such as 
unrealistic modeling in frequency of variation of structure of 
data, known as the hazard rate. In this paper, this limitation is 
modified and also the variation of hazard rate in complex time 
series is simulated. The paper is organized as follows. firstly 
change-point models have reviewed then simulation for 
achieving online inference of a constant hazard rate is 
simulated. And finally some numerical examples to show the 
approach and important features in this data are explained and 
investigated numerically.  

II. STRUCTURE OF ALGORITHM 

This paper is related with the problems of estimating and 
comparing time-series models. Suppose Y୬ ൌ ሼy1, y2, … , ynሽ is 
a time series data such that the density of variable y (t) given y 
(t-1) depends on a parameter m in our modelling, whose value 
changes at unknown time points.in some conditions in 
algorithm,  τ୫ ൌ ሼτଵ, … , τ୫ሽ Remains constant otherwise: 
where τଵ ൐ 1 ܽ݊݀ τ୫ ൏ ݊. the formulation of inference is 
related to the estimation of the parameters vector ሺθଵ, … , θ୫ାଵሻ, 
so the detection of the unknown change points Y୫ ൌ ሼτଵ, … , τ୫ሽ 
is required. 

This multiple change-point model has been generated in 
different articles such as [10] and [11]. In this article, we 
assumed first the joint distribution of the parameters {θ୩} is 
exchangeable in modeling and it is independent of the change 
points location.  

For modeling change point algorithm there are two basic 
approaches. The first approaches based on the observation that 
the ability to detect a change-point location that depends 
critically on knowledge of the dynamical system before the 
change point is taken place. In Figs. 1, 3 and 5 the real and 
generated data for three different data series are shown.  

In our simulation, data points are generated by adding 
Gaussian random noise to a mean value. The mean value 
varies in a continuous constant manner versus time, while 
changing suddenly at change-points but otherwise staying 
smooth constant. Thus, sample-by-sample fluctuations in the 
data series can reflect both noise and change-points to predict 
the position of the data point. In Figs. 2, 4 and 6 the run-length 
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distribution of our approach are plotted. In related figures 
these points show the run length, rt, which is defined as the 
number of time steps in modeling to most recent change-point. 
This parameter has a relatively simple time course, either 
increasing by 1 on time steps between change-points location 
or falling to 0 at a change-point. In general, the positions of 
change-points are not specified. 

 

 

Fig. 1 Effect of changing the hazard rate on the mean value of the 
predictive distribution 

 

 

Fig. 2 The run-length distribution in data 
 

 

Fig. 3 Effect of changing the hazard rate on the mean of the predictive 
distribution 

 

Fig. 4 The run-length distribution of data 
 

 

Fig. 5 Effect of changing the hazard rate on the mean of the predictive 
distribution 

 

 

Fig. 6 The run-length distribution of data 
 
Thus, for predictions of the next data point we should 

consider all possible run lengths in time series data and weight 
them by the probability of the run length [10]. For example, if 
x (t) is written as {x1, x2,..., xt}, then the problem of 
prediction is computing the predictive distribution, p (xt+1 | 
x1:t). This distribution can be written in terms of run lengths 
by given the previous data series. These figures highlight the 
limitation and effect of choosing h to our data. In Fig. 1 by 
setting h to zero the algorithm cannot detect the possibility of 
finding any change-points. In this case, the predictive mean is 
same as before. So, the run-length distribution is 0 everywhere 
except at rt = t − 1, where is evident in Fig. 2. 
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Increasing h to 0.6 results in detection of the change-point 
at t = 130. Increasing h further to 0.66 results in more and 
more change-points is being identified. Thus, the performance 
of models that require a pre-specified hazard rate can depend 
critically on which value is chosen, but which value is best is 
not always obvious in advance in our modeling. So other 
method and their limitation are described on next section. This 
approach allows optimal inference in more demanding 
problems in which the hazard rate is not given and can vary 
(in a piecewise constant manner) over time [12], [13]. 

III. SIMULATION WITH CONSTANT HAZARD RATE  

 

Fig. 7 The variation of actual data and the predicted mean value 
 

 

Fig. 8 The actual change-point locations from the generative process 
 

In this section, change-point is modeled as independent 
distributed samples from a common distribution. We simulate 
our model by first considering that change-point locations are 
known, and then address the more challenging case in which 
change-point locations are changed suddenly. In Figs. 7 and 
10 two different time series data are plotted and in Figs. 8 and 
11 the run-length distribution of data are plotted and finally 
the estimation and convergence of hazard rate are plotted in 
Figs. 9 and 12, respectively. It is evident from figures with 
respect to the fluctuation of our data, the convergence of 
hazard rate in our algorithm is changed and also the 
identification of location in change point is different so it is 
very important factor that our algorithm can predict hazard 
rate for better identification. And also in Fig. 11 the variation 

of change point is high because of the fast and long variation 
of amplitude in data series and convergence of hazard rate 
depend strongly to variation of data so if data has smoothing 
characteristics then more convergence and lower variation of 
change point is taken place that it is evident in figures. 

 

 

Fig. 9 Estimation of the hazard rate in our modeling 
 

 

Fig. 10 The variation of actual data and the predicted mean value 
 

 

Fig. 11 The actual change-point locations from the generative process 
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Fig. 12 Estimation of the hazard rate in our modeling 

IV. VARIATION OF SPATIAL AND STATISTICAL 

CHARACTERISTICS OF DATA 

 

Fig. 13 Generative parameters and real data 
 

 

Fig. 14 Unpruned run- length distribution of data versus time 
 

Generally, decomposition of a given time series for 
detecting phenomena is important. In process of modeling 
there are hidden or latent parameters in dynamical system 
when statistical change is taken place. And for this detection, 
there are different approaches in statistical science. 

 

 

Fig. 15 Pruned run-length distributions of data versus time 
 

 

Fig. 16 Estimation and variation of hazard rate 
 

 

Fig. 17 Generative parameters and real data 
 

In some algorithm when distance between real time data 
and prediction is larger than some threshold value; a change is 
detected [8]. In this section different time-series models that 
are subject to multiple of change points is simulated. In Figs. 
13, 17, 21, and 25 four different time series with different 
features and pattern of variation of mean or variance of data 
are shown. In Figs. 14, 18, 22, and 26 the unpruned run-length 
distribution is plotted and pruned results are plotted in Figs. 
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15, 19, 23, and 27. Finally estimation and variation of hazard 
rate are plotted in Figs. 16, 20, 24, and 28.  

 

 

Fig. 18 Run-length distribution of data versus time 
 

 

Fig. 19 run-length distributions of data versus time 
 

 

Fig. 20 Estimation and variation of hazard rate 
 

In simulation results, at locations with large changes 
between data series, the final change point probability is quite 
high. At other locations, the true change in the mean value is 
very small, and the model is less likely to put in a change 
point condition. For instance in Fig. 13 when the variation in 
change point is larger than run-length distribution then this 
quantity is low in this area but in all simulations when the 
variation of our data before the large change point is taken 
place then estimation of hazard rate has more difficult pattern 
with more fluctuation. 

 

 

Fig. 21 Generative parameters and real data 
 

 

Fig. 22 Run- length distribution of data versus time 
 

 

Fig. 23 Run-length distributions versus time 
 

Generally variation of regime in data is important for 
convergence and distribution of hazard rate and change point 
distribution. Obtaining posterior distributions of our data over 
the all the parameters in the model is vital in order to better 
quantify uncertainty. And it should be noted here when the 
estimation of our parameters has more density in some region 
of our data or when the length of proposed distribution is 
designed in suitable pattern then the whole distribution of our 
model is better and it has little fluctuation characteristics. 
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Fig. 24 Variation of hazard rate in our modeling 
 

 

Fig. 25 Generative parameters and real distribution data 
 

 

Fig. 26 Run- length distribution of data versus time 

 

Fig. 27 Run-length distributions of data versus time 
 

 

Fig. 28 Variation of hazard rate in our modeling 
 
Another important contribution of this article is simulation 

results is verified estimation of hazard rate and identification 
of change –point location is depend to regions of high density 
in data and algorithm must be designed better in this condition 
for obtaining these parameters. 

V. CONCLUSION 

We used an online prediction task to study change point 
variation. We evaluated algorithm by different time series for 
showing the importance of time series distribution on change 
point location and convergence of our model. Finally, we 
mentioned the length of our proposed distribution for 
estimating of our data is important factor that effect on simpler 
and smother fluctuation of hazard rate or better identification 
of change point. 
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