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 
Abstract—In order to better understand the long term 

implications of the grout wear failure mode in large-diameter plain-
sided grouted connections, a numerical model has been developed 
and calibrated that can take advantage of existing operational plant 
data to predict the wear accumulation for the actual load conditions 
experienced over a given period, thus limiting the requirement for 
expensive monitoring systems. This model has been derived and 
calibrated based on site structural condition monitoring (SCM) data 
and supervisory control and data acquisition systems (SCADA) data 
for two operational wind turbine generator substructures afflicted 
with this challenge, along with experimentally derived wear rates. 
 

Keywords—Grouted Connection, Numerical Model, Offshore 
Structure, Wear, Wind Energy.  

I. INTRODUCTION 

ISTORICALLY, straight sided grouted connections 
without shear keys have been extensively used across the 

offshore wind industry to transfer loads from the bottom of the 
wind turbine tower to the top of the monopile (MP), via a 
transition piece (TP). Typically the TP is a large diameter steel 
circular section, which is placed over the smaller diameter 
circular section of the MP with overlap of about 1.5 diameters 
of the MP. The resulting annulus is then filled with high 
strength grout, which allows any piling verticality tolerances 
of the MP to be accommodated to ensure the verticality of the 
wind turbine generator (WTG) tower is within acceptable 
limits of 0.25° [1]. A typical arrangement is shown in Fig. 1. 

Unexpected settlements of the TP relative to the MP in 
many of the offshore wind farms substructures reported since 
2009, have resulted in existing grouted connections requiring 
extensive ongoing remedial works to relieve them from 
fatigue damage accumulation, while providing sufficient axial 
capacity. Subsequent investigation of the grouted connection 
behaviour [2] and through structural condition monitoring and 
site investigations [3] have shown that significant relative 
vertical displacements between the inner surface of the grout 

 
Paul Dallyn is with the Centre for Innovative and Collaborative 

Construction Engineering, Loughborough University, Leicestershire, England, 
LE11 3TU, (phone: 0044(0)7796 347101 555-5555; e-mail: 
P.A.Dallyn@lboro.ac.uk).  

Ashraf El-Hamalawi and Alessandro Palmeri are with the School of Civil 
and Building Engineering, Loughborough University, Leicestershire, England, 
LE11 3TU (e-mail:A.El-hamalawi@lboro.ac.uk, A.Palmeri@lboro.ac.uk). 

Robert Knight is with the Civil Engineering Department of E.ON 
Technologies (Ratcliffe) Limited, Nottingham, England, NG11 0EE (e-mail: 
Bob.Knight@eon.com). 

annulus and outer steel surface of the MP are occurring. 
Historical experimental testing undertaken as part of 
development of design standards for plain-sided, and shear 
keyed grouted connections for jacket substructures, has also 
shown relative movement is required for the mobilisation of 
axial capacity of the connection [4]-[6] and summarised in 
“submitted for publication” [7]. This displacement, in 
combination with compressive stress and the presence of 
water, has been shown by experimental testing to result in loss 
of thickness of both the steel and the grout [8]. 
 

 

Fig. 1 Typical general arrangement of WTG monopile grouted 
connection substructure 

 
To determine how significant this loss of thickness is over 

the lifetime of the plant, a numerical model has been 
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developed to apply the wear rates derived from this 
experimental testing to the loading regime experienced by 
typical offshore wind turbine structures. The model provides 
an indication of the distribution of wear around the 
circumference and depth of the grouted connection, which will 
help to determine if further remediation of the existing grouted 
connection is going to be required within the remaining 
operational life of the wind turbine. It also provides the 
methodology for future designers and current operators of 
grouted connections to check designs against wear failure for 
their particular application, with their case-specific details. 

This paper will describe the development and calibration 
against site structural condition monitoring of this numerical 
model. 

II. MODEL DEVELOPMENT 

A review of the literature [7] and experimentation [8] 
undertaken previously as part of this research project, as well 
as research by [9], have indicated that wear is a function of the 
material properties, accumulated relative displacements and 
pressure applied to the surfaces. These factors will be directly 
influenced by the grouted connections specifications and the 
loads applied to them. By the very nature of a WTG, the loads 
experienced by the substructures will vary both spatially and 
temporally due to the variation of wind speed, direction and 
turbine operation, on a macro-scale between different sites, 
and micro-scale around the wind farm. As a result, the 
compressive stress and relative displacements experienced by 
each grouted connection will also vary. Ideally direct 
measurements of these stresses and displacements at various 
locations around individual grouted connections throughout a 
wind farm would be taken to provide the inputs to predict 
wear, but the cost of such extensive structural monitoring over 
the scale of a typical commercial wind farm with 100 such 
structures [10] would be prohibitive from a commercial 
perspective. The model has therefore been developed to take 
advantage of existing data collection on wind speed, direction 
and WTG power output through the WTG’s supervisory 
control and data acquisition (SCADA) system, which is used 
to provide control and information on the status of the WTG.  

To determine wear at circumferential locations and depths 
of the grouted connection, inputs from the WTG’s SCADA 
system in the form of ten minute average data on wind speed, 
wind direction and power production from two full scale 

offshore WTG substructures, identified as H4 and K1, have 
been used. The model combines this time series information, 
with relationships derived from analysis of H4 and K1 
structural condition monitoring (SCM) and SCADA data 
systems, to determine the values of the key factors for wear 
(displacement and compressive stress) through appropriate 
transfer functions. These transfer functions are required as the 
SCM was installed to understand the fatigue implications on 
the primary steel, as a result of the unexpected load transfer 
between jacking bracket and top of the MP caused by the 
settlement of the TP. Therefore some of the measured 
responses are not in locations relevant to determining wear in 
the grouted connection. These values of displacement and 
compressive stress are then used to determine the wear based 
on the experimental testing wear rates for the appropriate 
foundation conditions. The architecture of the model is shown 
in Fig. 2. 

A. Inputs 

In order to develop the relationships between the 
environmental inputs determined from the WTG’s SCADA 
system and the structural response determined by the 
substructure’s SCM system, a comparison of the two systems’ 
outputs has been made. Details of the two systems are shown 
in Table I, with the layout of the SCM system, in relation to 
jacking bracket locations in the substructure, shown in Fig. 3. 

The first steps in the data analysis was to synchronize the 
SCM and SCADA data time stamps and remove any periods 
of invalid data, due to system unavailability. Based on initial 
analysis of the SCADA and SCM systems data, a period of 
three months was chosen (January to March 2012) to derive 
the relationships, where limited drift in the data was apparent. 
This ensured that changes in substructure, such as gradual 
settlement of the TP relative to the MP would not influence 
the relationships derived. The initial analysis of the data also 
the relationships derived. The initial analysis of the data also 
highlighted that the vertical strain (SGA-V) outputs did not 
align with the structural response (Fig. 4). 

This was due to the datum setting for the data not being 
practical to be set when the wind speed was exactly 0m/s, but 
instead was set at 0600, 01/09/2011, 2.6m/s and 174° and at 
2150, 25/10/11 3.5m/s and 109° for K1 and H4 respectively. 
All strain gauge data therefore had to be corrected before any 
relationships were derived. 

 

 

Fig. 2 Grout wear numerical model architecture 
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TABLE I 
DATA ACQUISITION SYSTEM DETAILS 

System SCM SCADA 

Acquisition frequency 20Hz 20Hz 

Periods of data analysis 01/2012 - 01/2013 

Instrumentation location Top of grouted connection Hub height 
Instrumentation abbreviations W-SX-Y-Z WS Wind speed 

W Foundation location 
H4 

AP Active power 
K1 

X Bracket location 1-6 WD Wind direction 

Y Gauge type 

SGA-Axial strain 

 RD-Radial displacement 

VD Vertical displacement 

 Z Orientation V – Vertical displacement  

 
 

 

 

 

Fig. 3 SCM layout 
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plant. By modelling each WTG substructure location, this will 
enable a better understanding of the significance of the wear at 
each location due to the variance in wind loading. This can 
then be used to indicate if further remediation may be required 
to specific substructures in the future and if so allow for better 
planning for the remediation works helping to minimize 
financial costs. It will also allow for a reduction in site 
inspections by determination of the structures experiencing the 
most significant loading conditions for wear. 
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