
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

247

 

 

 
Abstract—Chemical Reaction Optimization (CRO) is an 

optimization metaheuristic inspired by the nature of chemical 
reactions as a natural process of transforming the substances from 
unstable to stable states. Starting with some unstable molecules with 
excessive energy, a sequence of interactions takes the set to a state of 
minimum energy. Researchers reported successful application of the 
algorithm in solving some engineering problems, like the quadratic 
assignment problem, with superior performance when compared with 
other optimization algorithms. We adapted this optimization 
algorithm to the Printed Circuit Board Drilling Problem (PCBDP) 
towards reducing the drilling time and hence improving the PCB 
manufacturing throughput. Although the PCBDP can be viewed as 
instance of the popular Traveling Salesman Problem (TSP), it has 
some characteristics that would require special attention to the 
transactions that explore the solution landscape. Experimental test 
results using the standard CROToolBox are not promising for 
practically sized problems, while it could find optimal solutions for 
artificial problems and small benchmarks as a proof of concept. 

 
Keywords—Evolutionary Algorithms, Chemical Reaction 

Optimization, Traveling Salesman, Board Drilling. 

I. INTRODUCTION 

ODERN life heavily relies on optimization as a 
keystone in science and engineering when applied to the 

business and industry problems; most of the problems can be 
formulated as optimization problems; like scheduling, cell 
placement, stock market trend prediction, etc. Algorithms for 
finding optimal solutions for practically sized problems in 
reasonable time do not exist and may not even in the future, 
but if the goal is relaxed to near optimal then a wide range of 
approximate algorithms do exist. For example, the class 
known as nature-inspired optimization techniques are typically 
general-purpose population-based techniques, also known as 
Evolutionary Algorithms (EA), build on the natural biological 
processes. Although EA refers to the biological process, it has 
been used with any process of iteratively changing a group of 
possible solutions towards the best possible one for the 
problem in hand. Amongst the most popular ones are: Genetic 
Algorithm (GA) [1], Particle Swarm Optimization (PSO) [2], 
Memetic Algorithm (MA) [3], [4], Differential Evolution (DE) 
[5], Ant Colony Optimization (ACO) [6], and Harmony 
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Search (HS) [7]. Many of them are inspired by the biological 
process, varying in scale from the genetic structure to the 
living things behavior, and recently the CRO, which was 
proposed by [8]. The CRO is inspired by the nature of 
chemical reactions, and has been applied to solve many 
problems successfully, outperforming many evolutionary 
algorithms. Gravitational Search Algorithm (GSA) [9], [10] is 
an example of evolutionary algorithms that build the physical 
phenomenon to evolve a set of solutions towards a near 
optimal one. Another example is the Simulated Annealing 
(SA) [11], which builds on the annealing process in which the 
physical properties of iron depends on the cooling schedule 
after melting. This algorithm has a hill climbing feature but 
differs from the CRO in that it works on one solution rather 
than a population. The CRO behavior becomes close to the SA 
under certain conditions. 

The standard CRO uses different elementary actions on a 
set of molecules to reach an equilibrium or minimal energy 
state. The actions consist of two ineffective collisions, on-wall 
and inter-molecular, to achieve intensification (or exploitation 
in terms of solution space), and two others; decomposition and 
synthesis, to achieve diversification (or exploration in terms of 
solution space). In our implementation, we will use similar 
actions but with names that are more consistent with 
algorithmic significance in the search process. 

During the search, and based on the parameters settings, the 
CRO may demonstrate behavior of both SA and GA, and 
hence may have a potential to tackle problems which have not 
been successfully solved by other metaheuristic. CRO has not 
been heavily explored; some problems were solved 
successfully due to some reports, but we don't know yet which 
classes of problems are suitable for CRO and which are not. 
There is no easy answer at this moment, and like many other 
evolutionary algorithms, it takes a while to figure out as the 
research community applies this method to more and more 
problems. 

II. RELATED WORK 

Chemical Reaction Optimization (CRO) [8] is a recently 
proposed general-purpose optimization metaheuristic. It 
mimics the interactions of molecules in chemical reactions, 
driving towards the lowest state of free energy. CRO has 
demonstrated its ability to solve many real-world optimization 
problems. In [12], the authors employ CRO to solve an 
optimization problem called population transition problem. 
The objective is to maximize the probability of universal 
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streaming by manipulating population transition probability 
matrix. Simulation results show that CRO outperforms many 
commonly used strategies for controlling population transition 
in many practical P2P live streaming systems. Reference [13] 
develops a CRO-based cognitive radio channel allocation 
algorithm, it studies three utility functions for utilization and 
fairness, with the consideration of the hardware constraint. 
The proposed algorithm always outperforms the others 
dramatically. Reference [14] proposes a real-coded version of 
CRO called RCCRO to solve continuous optimization 
problems. The performance of RCCRO is compared with a 
large number of optimization algorithms on a large set of 
standard continuous benchmarks. 

The PCB drilling problem is an instance of the Traveling 
Sales Problem (TSP), a widely studied combinatorial 
optimization problem, which is concerned with finding the 
shortest tour that a salesman has to visit through all the cities. 
It has many applications in different engineering and 
optimization problems [15]. Several metaheuristic approaches 
have been developed to solve the TSP problem such as 
Simulated Annealing [16], Tabu Search [17], Genetic 
Algorithms [18], Variable Neighborhood Search [19], Neural 
Networks [20], Ant Colony Optimization [21], and Particle 
Swarm Optimization [22]. In [23], TSP is used as a case study 
to show the capabilities of the Ant Colony Optimization 
(ACO) algorithm to find the best solution in terms of the 
shortest tour length. The paper presents experimental results 
on a benchmark data to show how it could improve ACS 
algorithm. Reference [24] develops a new fuzzy-logic based 
ACO algorithm, considering the uncertainties that can be 
found in the pheromone and the heuristic factors. The 
proposed technique enables the artificial ant to choose the best 
oncoming step based on the values of the probabilities and 
their corresponding fuzzy levels. It produces an optimal 
solution in the form of an optimal value and its corresponding 
fuzzy level. 

III. CHEMICAL REACTION OPTIMIZATION 

The CRO algorithm starts with a number of molecules 
picked at random or through a mechanism for locating feasible 
starting points in the landscape. Few elementary operations are 
applied to those molecules iteratively producing more fit ones 
until some stopping criteria is met. In the main reactions, the 
ones meant to exploit subspaces, the number of inputs and 
outputs are equal and hence do not change the population size 
no matter how often they are called. However, the other two 
reactions, the ones meant to explore the space, are either 
population increasing or population decreasing, and unless 
they have the same number of occurrences, the population size 
will tend to increase or decrease. Fortunately, if the population 
decreases, the algorithm will tend to apply decomposition to 
avoid the single solution population. However, both extremely 
small and extremely large populations are undesirable, as the 
first is less effective in search while the second is a 
computational burden. 

Based on the number of molecules involved and the number 
of molecules produced, we divide the CRO elementary 
reactions into four classes: 
 1-to-1 processes, one molecule is involved to produce one 

molecule; a process in which a molecule structure is 
deformed through a minor or a major structural change, 
we call this process deformation. 

 1-to-2 processes, one molecule is involved to produce 
more than one molecule; typically two molecules are 
derived from one, we call this process decomposition. 

 2-to-1 processes, two or more molecules are involved to 
produce one molecule; a process in which the properties 
of many are expressed in one, we call this process 
combination. 

 2-to-2 processes, two molecules are involved to produce 
two molecules; a process in which properties of both are 
transferred into two new molecules; we call this process 
collaboration 

In the context of developing new solutions from a set of 
ones in hand at a certain time, we will call the first two 
actions, the ones that involve one molecule, D-type 
(Deformation, Decomposition), while we call the other two, 
the ones that involve 2 molecules, C-type (Combination, 
Collaboration). Related literature uses chemical reactions 
terms like synthesis instead of combination, and 
intermolecular collision instead of collaboration, but we feel 
better off using terms that express the processes behavior as 
they take place in the search process. Starting with a set of 
molecules representing valid solutions to the problem in hand, 
those processes are meant to generate better sets over time, 
until we reach an optimal solution; convergence. It is quite 
important for convergence to carry out operations that provide 
both exploration and exploitation. The relative effect of each 
type on the exploitation and exploration is shown in Table I, 
where ** means primary and * means secondary, based on the 
contribution to convergence. In fact, no one action is solely 
responsible for either exploration or exploitation. 

 
TABLE I 

ACTIONS AND SIGNIFICANCE 

Action Cardinality Exploration Exploitation 

Deformation 1-to-1 * ** 

Decomposition 1-to-2 ** * 

Combination 2-to-1 ** * 

Collaboration 2-to-2 * ** 

 
The CRO algorithm is simple, we initialize a set of 

parameters based on the instance to solve, and we repeat until 
the stopping criterion is satisfied. In each loop we go for C-
type or D-type path based on the present value repressing the 
C-type actions rate. And in each path, we check for 
decomposition or synthesis condition if met, or else we 
perform deformation or collaboration instead. The pseudocode 
below shows an outline of the algorithm, along with basic 
definitions of the terms used.  

 
1. Set The CRO Initial Parameters 
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2. Pick Initial Set of Molecules 
3. Pick a random number p  [0,1] 
4. If p < CAR { 
      Pick a molecule at random 
      If CCS  { // Apply Combination 
         } 
      else 
         { // Apply Collaboration 
         } 
      } 
  else 
      { 
      Pick two molecules at random 
      If CDS  { // Apply Decomposition 
         } 
      else 
         { // Apply Deformation 
         } 
      } 
  endif 
5. Keep Current Optimal Molecule  
6. If NOT SCS GOTO 3 
7. Report Optimal Molecule  

CAR means C-type Actions Rate 
CCS means Combination Criteria Satisfaction is true 
DCS means Decomposition Criteria Satisfaction is true 
SCS  means Stopping Criteria Satisfaction is true 
The stopping criteria used is a preset number of repeats with 

a preset number of iterations for each. The values CAR, CCS 
and DCS were varied based on the test to be carried out. 

IV. PCB DRILLING PROBLEM 

Printed Circuits Board (PCB) manufacturing is a major 
component of computers and electronic equipments in general. 
The number of holes of various diameters varies from few tens 
to few hundreds or even thousands. The time to drill the holes 
depends on the order by which the numerically controlled 
drilling machine drill the holes. This problem can be viewed 
as an instance of the well known Traveling Salesman problem 
(TSP) with a time matrix instead of distance matrix. 

The Printed Circuit Board Drilling problem can be viewed 
as an instance the Traveling Salesman Problem, where the 
cities map to holes and the distance matrix maps to the time 
matrix, which represents the time to fly the drill bit between 
two holes. To make use of the CROToolBox, we represent 
each candidate solution with a string whose length is the 
problem size, i.e. number of holes to order for drilling. While 
processing those solutions as molecules, we apply a set of 
actions towards getting more fit ones taking into account that 
none of those actions results in an invalid solution; every hole 
number has to appear exactly once in the string. The actions 
may produce solutions that look different while they are in 
reality the same from the fitness point of view, for example, 
the two strings: 

 

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 – 9 and 3 - 4 - 5 - 6 - 7 - 8 - 9 - 0 - 1 - 2 

 

represent two solutions while they have the same fitness and 
they represent the same order. Such strings may show up in 
the population over time and no attention will be paid to avoid 
them, as they represent different schemata in fact, and 
applying the same action to each would result in two different 
outcomes. For example, if the deformations action is to 
operate on the 4th entry, then we can get: 
 

0 - 1 - 2 - 4 - 3 - 5 - 6 - 7 - 8 – 9 and 3 - 4 - 5 - 7 - 6 - 8 - 9 - 0 - 1 - 2 

 
which are not the same. Hence, we believe that this would 
avoid computational burden and results in better exploration 
of the solution space. 

D-Type and C-Type Actions 

Two types of actions are used in the CRO search; D-type 
and C-type. The D-type actions use one molecule to generate 
either one or two molecules. Deformation is a process in 
which a molecule is slightly perturbed to generate a new 
molecule, while Decomposition is a process that generates two 
molecules out of one, passing to each one part of its structure. 
The C-type actions use two molecules to generate one or two 
molecules. Combination is a process in which two molecules 
combine or unite to generate one, carrying part of each 
structure, while Collaboration is a process in which two 
molecules have some sort of crossover to generate two ones 
with some degree of similarity; each one have parts of the two 
molecules involved. The following section explains how to 
carry out those actions using a small instance of 10 holes, 
showing the input(s) and outputs(s) of each action. 

1-to-1 Actions (Deformation) 

This process injects some structural change, so the molecule 
gets deformed. These deformations can be minor; swapping a 
randomly selected entry with its neighbor, major; swapping 
two randomly selected entries, or hard; by selecting three 
entries at random and swapping the first with the second, the 
second with the third, and the third with the first. For example: 

 
Input 
0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 
minor; one point 

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 – 9 

Output 

 0 - 1 - 2 - 3 - 5 - 4 - 6 - 7 - 8 – 9 

major; two points 

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 – 9 

Output 
0 - 1 - 2 - 3 - 7 - 5 - 6 - 4 - 8 - 9 
hard; three points 

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 – 9 

Output 
0 - 7 - 2 - 3 - 1 - 5 - 6 - 4 - 8 - 9 

1-to-2 Actions (Decomposition) 

This process decomposes a molecule into two new ones to 
enrich the population in its solution space representation; one 
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way to carry this out is by picking a random point, and 
generating two molecules by keeping lower or upper part and 
randomizing the rest. For example: 

 
Input 
0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 
Outputs 

0 - 1 - 2 - 3 - 4 - 7 - 9 - 6 - 8 – 5 and 2 - 3 - 1 - 0 - 4 - 5 - 6 - 7 - 8 - 9 

2-to-1 Actions (Combination) 

This process combines two molecules into one; it constructs 
a molecule whose entries are alternatively form the first and 
the second without duplication. For example: 

 
Inputs 

0 - 6 - 1 - 3 - 4 - 8 - 2 - 7 - 5 – 9 and 7 - 2 - 8 - 5 - 6 - 0 - 3 - 9 - 4 - 1 

Output 
0 - 7 - 6 - 2 - 1 - 8 - 3 - 5 - 4 - 9 

2-to-2 Actions (Collaboration) 

This process is possibly the most significant due to its major 
contribution to exploitation; we pick two molecules and mate 
them to produce new two molecules carrying the properties of 
both. This can be carried out by picking two random 
molecules and make a cut in each; keep the first part and fill 
the other from the other molecule. For example: 

 
Input 

0 - 6 - 1 - 3 - 4 - 8 - 2 - 7 - 5 – 9 and 0 - 7 - 2 - 8 - 5 - 6 - 1 - 3 - 9 – 4 

Outputs 

0 - 6 - 1 - 3 - 4 - 7 - 2 - 8 - 5 – 9 and 0 - 7 - 2 - 8 - 6 - 1 - 3 - 4 - 5 - 9  

 
In all cases, the number of molecules has to be kept within 

reasonable limits to match the computational resources. 
Unless the decomposition and synthesis rates are equal, the 
population will tend to inquires or decrease by time. A way 
around that is to drop molecules if a list is reached, like the 
least fit ones, and to split one to two for example when it goes 
quite low. It is like thinking of a larger container holding the 
container in which reactions take place, if the inner container 
wall is pressure sensitive such that when pressure inside is low 
due to smaller population then more molecules from the outer 
container go in, and if it the pressure is high due to larger 
population then some leak out.  

V. EXPERIMENTS 

First set of tests were conducted using the CRO Tool Box 
with the default set of parameters. Small problems have shown 
good results and the algorithm could even find an optimal 
solution, while for medium sized problems the final solution 
was an acceptable even with 20 repeats. 

Table II shows 10 runs (repeats) for various number of 
iterations using a set of default parameters; Initial population 
Size: 150, Initial Kinetic Energy: 1000, Collision Rate: 0.2, 
Energy Loss Rate: 0.2, Decomposition Threshold: 1300, 
Synthesis Threshold: 10. In Table II, Error is computed as the 

difference between the optimal and the found one divided by 
the optimal. 

 
TABLE II 

BEST SOLUTION FOR 4 PROBLEMS 

1,000,000 100,000 10,000 Problem 

Error Best Error Best Error Best Optimal Size 

0.006 74.07 0.18 74.45 0.07 75.92 74.07 22 

0.30 41411 0.75 56300 1.92 92250 33523 48 

1.22 1069 1.34 1106 2.04 1438 508.00 96 

1.73 16157 1.91 17055 5.04 35313 6110.00 130 

 
Testing the PCB442 (Optimal cost 50783) against number 

of iterations using default parameters; Initial population Size: 
150, Initial Kinetic Energy: 1000, Collision Rate: 0.2, Energy 
Loss Rate: 0.2, Decomposition Threshold: 1300, Synthesis 
Threshold: 10. 

Table III shows the PCB442 benchmark test result. Clearly, 
the number of iterations has an impact on the solution quality, 
but not justifiable at large number of iterations; Going from 
10,000 to 10 folds reduced the error by 2.06 while going from 
1,000,000 to 10 fold reduced the error by only 0.25. In all 
cases, the performance of this algorithm with its default 
parameters is far less than expected. 

 
TABLE III 

STATISTICS VERSUS NUMBER OF ITERATIONS 

Iterations Average Best Std. Dev. Error 

10,000 555964 548811 3727 9.94 

100,000 552748 542960 4517 7.88 

1,000,000 329682 313044 8631 5.49 

10,000,000 317130 313473 2558 5.24 

100,000,000 310670 306077 2437 5.11 

 
Table IV shows the effect of Decomposition Threshold; 10 

runs, each 1,000,000 iterations. Small increments of the 
starting point of 1300 have no impact on the error, that we 
made large increments of 25,000. The minimum error 
occurred when the threshold reached 100,000 and started to 
increase again. This parameter is problem dependent. 

 
TABLE IV 

IMPACT OF DECOMPOSITION AND SYNTHESIS RATES 

Threshold Decompose Synthesis Best Error 

1300 452 600 322463 5.34 

25,000 31 180 160442 2.15 

50,000 15 164 149574 1.94 

75,000 10 159 143506 1.82 

100,000 7 156 136443 1.68 

125,000 6 155 143212 1.82 

150,000 5 153 143873 1.87 

 
To evaluate the impact of the synthesis rate, we carried out 

many runs, 100,000 iterations each, with fixed decomposition 
threshold, and noticed only minor change in performance even 
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with large adjustments of collision rate, kinetic energy, energy 
loss rate. Error fluctuated in the range 1.67 to 1.77 in no 
pattern. 

The progress, cost and population size over time, is tested 
using 22-hole and 130-hole problems for 10,000 and 100,000 
runs respectively, and the population, cost and number of 
reactions of each type is shown. Figs. 1 and 2 depict the cost 
and population size over time (iteration) for the 22-hole and 
130-hole problems respectively. The CRO performance on 
small instances was consistently excellent, as it could always 
find an optimal solution, while it starts to decline even with 
instances that are far less than the practically commercial size. 
With PCB442 benchmark, the cost has never come even close 
to the optimal one, even with tens of millions of iterations and 
many repeats.  

 

 

Fig. 1 Cost and Population over Time (22-hole instance) 
 

 

Fig. 2 Cost and Population over Time (130-hole instance) 
 
Fig. 3 shows the reaction types involved over time. The test 

was conducted on a small instance and for 10,000 iterations. 
 

 

Fig. 3 Actions Count over Time 
 

Clearly, decomposition and combination contribution is 
quite limited and almost have the same rate, while the 
collaboration is relatively small compared to the deformation. 
With this set of parameters the CRO behaves like SA 
algorithm. The CRO could find the optimal solution for the 
22-hole problem many times when 10,000 iterations and 
default parameters were used, while the 130-hole problem 
solution was always far from optimal. However, it was noticed 
that major improvements in the objective function were 
achieved when the population size drops to small values. 

VI. CONCLUSION 

As a recent general-purpose optimization technique, the 
CRO builds on the nature of chemical reactions, mimicking 
the interactions of molecules in the form of elementary 
reactions. The sequence of the elementary reactions leads to 
exploring the solution space towards a minimum with a hope 
of a global minimum. The search parameters must be set to 
control the search scope like climbing hills and hence 
managing the energy is pivotal property of such an algorithm. 
Another advantage of this algorithm was its ability to 
adaptively change the population size and hence do more 
iterations in less time. Although the literature reports many 
successful applications of the CRO, we believe there is still 
much to do to realize if the PCB drilling problem, or the TSP 
as an umbrella, is fit or not for this technique, and thanks to 
the No- Free-Lunch Theorem [25] which tells us that all 
metaheuristic which search for extremes are exactly the same 
in performance when averaged over all possible objective 
functions, while one works well in a certain class of problems, 
it may not in another. 

VII. FUTURE WORK 

Due to the less than expected performance on benchmarks, 
we plan to modify the elementary reactions and possibly 
introduce new ones that enhance the effectiveness of the CRO 
algorithm for the PCB drilling problem in particular. One 
possible way to go is to consider the peculiar relations among 
sets of holes; like those representing two or four sides of a 
chip. This might require partitioning the holes in a way that 
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avoids randomized change to relatively stable connectivity 
patterns.  
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