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Solving Linear Matrix Equations by Matrix
Decompositions
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Abstract—In this paper, a system of linear matrix equations
is considered. A new necessary and sufficient condition for the
consistency of the equations is derived by means of the generalized
singular-value decomposition, and the explicit representation of the
general solution is provided.
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I. INTRODUCTION

WE consider the solution of the linear matrix equations⎧⎪⎪⎨
⎪⎪⎩

A1X = C1,
A2Y = C2, Y B2 = D2, Y = Y H,
A3Z = C3, ZB3 = D3, Z = ZH,
A4X + (A4X)H +B4Y BH

4 + C4ZCH
4 = D4,

(1)

where

A1 ∈ Ca1×m, C1 ∈ Ca1×n,

A2, C2 ∈ Ca2×p, B2, D2 ∈ Cp×b2 ,

A3, C3 ∈ Ca3×q, B3, D3 ∈ Cq×b3 ,

A4 ∈ Cn×m, B4 ∈ Cn×p, C4 ∈ Cn×q,

and

D4 = DH
4 ∈ Cn×n.

Solvability and solutions of matrix equations have been
one of principle topics in matrix analysis and its applications.
For instance, Mitra [1] considered solutions with fixed ranks
for the matrix equations AX = B and AXB = C, Mitra
[2] gave common solutions of minimal rank of the pair of
matrix equations AX = C,XB = D. Uhlig [3] gave the
maximal and minimal ranks of solutions of the equation
AX = B. Mitra [4] examined common solutions of minimal
rank of the pair of matrix equations A1XB1 = C1 and
A2XB2 = C2. In 2006, Lin and Wang in [5] studied the
extreme ranks of solutions to the system of matrix equations
A1X = C1, XB2 = C2, A3XB3 = C3 over an arbitrary
division ring, which was investigated in [6] and [7]. Liu
[8] derived the maximal and minimal ranks of least squares
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solutions for AXB = C using the matrix rank method and
the normal equation. Cvetković-Ilić [9], Peng, Hu and Zhang
[10] considered the reflexive and anti-reflexive solutions of the
matrix equation AXB = C by means of generalized inner
inverse and the generalized singular-value decomposition. In
the papers [11–13], necessary and sufficient conditions for the
existence of symmetric and anti-symmetric solutions of the
equation AXB = C were investigated.

Wu [14] studied Re-pd solutions of the equation AX = C
and Wu and Cain [15] found the set of all complex Re-nnd
matrices X such that XB = C and presented a criterion for
Re-nndness. Größ [16] gave an alternative approach, which
simultaneously delivers explicit Re-nnd solutions and gave
a corrected version of some results from [15]. Recently, in
[17] and [18], the common Re-nnd and Re-pd solutions of the
matrix equations AX = C,XB = D, where A,C ∈ Cn×m

and B,D ∈ Cm×n, are considered by virtue of the maximal
and minimal ranks of matrix polynomials. Wang and Yang
[19] presented criteria for 2×2 and 3×3 partitioned matrices
to be Re-nnd, found necessary and sufficient conditions for
the existence of Re-nnd solutions of AXB = C and derived
an expression for these solutions. In the special case that A
and B are both nonnegative matrices, Cvetković-Ilić [20] put
forward a necessary and sufficient condition for the existence
of Re-nnd solutions of AXB = C in terms of g-inverses.
Zhang, Sheng and Xu [21] generalized the main results of [20]
from the finite-dimensional case to the Hilbert space operator
case.

Matrix equations such as A4X+(A4X)H = D4, B4Y BH
4 =

D4 and B4Y BH
4 +C4ZCH

4 = D4, which are the special cases
of (1), arise in a number of practical applications in linear
system theory, numerical analysis and structural dynamics, and
have been studied by Braden [22], Djordjević [23], Yuan [24,
25], Dai and Lancaster [26], Baksalary [27], Größ [28], Liu,
Tian and Takane [29], Liao and Bai [30], Deng and Hu [31]
and Liu and Tian [32], and so forth.

Very recently, Wang and He [33] derived the solvability
conditions and the expression of the general solution to the
matrix equations of (1) by virtue of the maximal and minimal
ranks of matrix polynomials. In this paper, we will provide
a new approach based on the generalized inverses and the
generalized singular-value decomposition (GSVD) to solve
(1). In Section II, we establish a necessary and sufficient
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condition for the existence of the solution of (1) directly by
means of the GSVD, and construct the explicit representation
of the general solution when it is solvable. Throughout this
paper, we denote the complex m×n matrix space by Cm×n,
the conjugate transpose and the Moore-Penrose generalized
inverse of a complex matrix A by AH and A+, respectively.
In represents the identity matrix of size n. Furthermore, for
a matrix A ∈ Cm×n, let EA and FA stand for the two
orthogonal projectors: EA = Im−AA+ and FA = In−A+A.

Let G1 ∈ Cn×q, G2 ∈ Cn×d, then the GSVD (see, e.g.,
[34–36]) of the matrix pair (G1, G2) is of the form

G1 = NΩ1P
H, G2 = NΩ2Q

H, (2)

where P ∈ Cq×q, Q ∈ Cd×d are unitary matrices and N ∈
Cn×n is a nonsingular matrix, and

Ω1 =

⎡
⎢⎢⎣

I 0 0
0 S1 0
0 0 0
0 0 0

⎤
⎥⎥⎦

h− t
t

e− h
n− e

h− t t q − h

,

Ω2 =

⎡
⎢⎢⎣

0 0 0
0 S2 0
0 0 I
0 0 0

⎤
⎥⎥⎦

h− t
t

e− h
n− e

u t e− h

,

u = d+ h− e− t,

h = rank(G1), e = rank[G1, G2],

and

S1 = diag {γ1, · · · , γt} ,
S2 = diag {δ1, · · · , δt}

with

1 > γ1 ≥ · · · ≥ γt > 0,

0 < δ1 ≤ · · · ≤ δt < 1,

γ2
i + δ2i = 1 (i = 1, · · · , t).

Lemma 1: [37] If A ∈ Cm×n, H ∈ Cm×l, then

AZ = H

has a solution Z ∈ Cn×l if and only if

AA+H = H.

In this case, the general solution of the equation can be
described as

Z = A+H + FAL,

where L ∈ Cn×l is an arbitrary matrix.
Lemma 2: [38] Let A,B ∈ Cn×p, then the matrix equation

AY = B

has a Hermitian solution Y ∈ Cp×p if and only if

BAH = ABH, AA+B = B,

in which case, the general Hermitian solution is

Y = A+B + FA(A
+B)H + FAKFA,

where K ∈ Cp×p is an arbitrary Hermitian matrix.
Lemma 3: [22, 24] Let A ∈ Cm×n, D ∈ Cm×m. Then the

matrix equation
AXH +XAH = D

has a solution X if and only if

D = DH, EADEA = 0,

in which case, the general solution is

X = 1
2D(A+)H + 1

2EAD(A+)H + V − 1
2V A+A

− 1
2AV H(A+)H − 1

2EAV A+A,

where V ∈ Cm×n is an arbitrary matrix.
It follows from Lemma 1 that the matrix equation A1X =

C1 has a solution X ∈ Cm×n if and only if

A1A
+
1 C1 = C1.

In this case, the general solution of the equation can be
described as

X = A+
1 C1 + FA1

L, (3)

where L ∈ Cm×n is an arbitrary matrix.
Let

AH =
[
AH

2 , B2

]H
, BH =

[
CH

2 , D2

]H
.

By Lemma 2, we know the matrix equations

A2Y = C2, Y B2 = D2

has a Hermitian solution Y if and only if

AA+B = B,ABH = BAH,

in which case the general Hermitian solution of the equation
can be expressed as

Y = A+B + FA(A
+B)H + FAKFA, (4)

where K ∈ Cp×p is an arbitrary Hermitian matrix.
Likewise, let

CH =
[
AH

3 , B3

]H
, DH =

[
CH

3 , D3

]H
,

then the matrix equations

A3Z = C3, ZB3 = D3

II. THE SOLUTION OF (1)
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has a Hermitian solution Z if and only if

CC+D = D,CDH = DCH,

in which case the general Hermitian solution of the equation
can be expressed as

Z = C+D + FC(C
+D)H + FCJFC , (5)

where J ∈ Cq×q is an arbitrary Hermitian matrix.
By substituting (3), (4) and (5) into the fourth equation of

(1), we can obtain

M1L+ LHMH
1 +M2KMH

2 +M3JM
H
3 = W1, (6)

where

M1 = A4FA1 , M2 = B4FA, M3 = C4FC

and

W1 = D4 −A4A
+
1 C1 − (A4A

+
1 C1)

H −B4A
+BBH

4

− B4FA(B4A
+B)H − C4C

+DCH
4 − C4FC(C4C

+D)H.

According to Lemma 3, the equation of (6) with respect to L
is solvable if and only if

G1KGH
1 +G2JG

H
2 = W, (7)

and the general solution of (6) with respect to L can be
expressed as

L = 1
2M

+
1 D̃ + 1

2M
+
1 D̃EM1 + U − 1

2M
+
1 M1U

− 1
2M

+
1 UHMH

1 − 1
2M

+
1 M1UEM1

,
(8)

where

G1 = EM1
M2,

G2 = EM1
M3,

W = EM1
W1EM1

,

D̃ = W1 −M2KMH
2 −M3JM

H
3

and U is an arbitrary matrix.
By (2), the equation of (7) can be equivalent written as

Ω1P
HKPΩH

1 +Ω2Q
HJQΩH

2 = N−1W (N−1)H. (9)

Write

PHKP = [Kij ]3×3, Kij = KH
ij , i, j = 1, 2, 3, (10)

QHJQ = [Jij ]3×3, Jij = JH
ij , i, j = 1, 2, 3, (11)

N−1W (N−1)H = [Wij ]4×4, Wij = WH
ij , i, j = 1, 2, 3, 4,

(12)

and the partitions of the matrices PHKP,QHJQ and
N−1W (N−1)H are compatible with those of Ω1 and Ω2.
Thus, from (9), we have⎡

⎢⎢⎣
K11 K12S1 0 0

S1K
H
12 S1K22S1 + S2J22S2 S2J23 0

0 JH
23S2 J33 0

0 0 0 0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

W11 W12 W13 W14

WH
12 W22 W23 W24

WH
13 WH

23 W33 W34

WH
14 WH

24 WH
34 W44

⎤
⎥⎥⎦ .

(13)

By (13), we can get

W13 = 0, Wi4 = 0, i = 1, 2, 3, 4,

K11 = W11, K12S1 = W12,

S1K22S1 + S2J22S2 = W22,

J33 = W33, S2J23 = W23.

In summary of above discussion, we can easily obtain the
following result.

Theorem 1: Suppose that

A1 ∈ Ca1×m, C1 ∈ Ca1×n,

A2, C2 ∈ Ca2×p, B2, D2 ∈ Cp×b2 ,

A3, C3 ∈ Ca3×q, B3, D3 ∈ Cq×b3 ,

A4 ∈ Cn×m, B4 ∈ Cn×p, C4 ∈ Cn×q

and
D4 = DH

4 ∈ Cn×n.

Let

AH =
[
AH

2 , B2

]H
, BH =

[
CH

2 , D2

]H
,

CH =
[
AH

3 , B3

]H
, DH =

[
CH

3 , D3

]H
,

M1 = A4FA1
,M2 = B4FA,M3 = C4FC ,

W1 = D4 −A4A
+
1 C1 − (A4A

+
1 C1)

H −B4A
+BBH

4

−B4FA(B4A
+B)H − C4C

+DCH
4 − C4FC(C4C

+D)H,

G1 = EM1
M2, G2 = EM1

M3,W = EM1
W1EM1

,

the GSVD of (G1, G2) be given by (2) and N−1W (N−1)H =
[Wij ]4×4 be given by (12). Then the equation of (1) has a
solution (X,Y, Z) if and only if

A1A
+
1 C1 = C1, AA+B = B, ABH = BAH,

CC+D = D, CDH = DCH,

W13 = 0, Wi4 = 0, i = 1, 2, 3, 4,

in which case, the general solution can be expressed as

X = A+
1 C1 + FA1L,

Y = A+B + FA(A
+B)H + FAKFA,

Z = C+D + FC(C
+D)H + FCJFC ,
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where L is given by (8) with

D̃ = W1 −M2KMH
2 −M3JM

H
3 ,

and

K = P

⎡
⎣

W11 W12S
−1
1 K13

S−1
1 WH

12 S−1
1 (W22 − S2J22S2)S

−1
1 K23

KH
13 KH

23 K33

⎤
⎦PH,

J = Q

⎡
⎣

J11 J12 J13
JH
12 J22 S−1

2 W23

JH
13 WH

23S
−1
2 W33

⎤
⎦QH,

and

U,K13,K23,K33 = KH
33, J11 = JH

11, J22 = JH
22, J12, J13

are all arbitrary matrices.
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[16] J. Größ, Explicit solutions to the matrix inverse problem AX = B,
Linear Algebra and its Applications, 289 (1999) 131–134.

[17] Z. Xiong, Y. Qin, The common Re-nnd and Re-pd solutions to the
matrix equations AX = C and XB = D, Applied Mathematics and
Computation, 218 (2011) 3330–3337.

[18] X. Liu, Comments on “The common Re-nnd and Re-pd solutions to the
matrix equations AX = C and XB = D”, Applied Mathematics and
Computation, 236 (2014) 663–668.

[19] Q. Wang, C. Yang, The Re-nonnegative definite solutions to the matrix
equation AXB = C, Comment. Math. Univ. Carolinae, 39 (1998) 7–
13.
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