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Abstract—In-memory database systems are becoming popular 

due to the availability and affordability of sufficiently large RAM and 
processors in modern high-end servers with the capacity to manage 
large in-memory database transactions. While fast and reliable in-
memory systems are still being developed to overcome cache misses, 
CPU/IO bottlenecks and distributed transaction costs, disk-based data 
stores still serve as the primary persistence. In addition, with the 
recent growth in multi-tenancy cloud applications and associated 
security concerns, many organisations consider the trade-offs and 
continue to require fast and reliable transaction processing of disk-
based database systems as an available choice. For these 
organizations, the only way of increasing throughput is by improving 
the performance of disk-based concurrency control. This warrants a 
hybrid database system with the ability to selectively apply an 
enhanced disk-based data management within the context of in-
memory systems that would help improve overall throughput.  

The general view is that in-memory systems substantially 
outperform disk-based systems. We question this assumption and 
examine how a modified variation of access invariance that we call 
enhanced memory access, (EMA) can be used to allow very high 
levels of concurrency in the pre-fetching of data in disk-based 
systems. We demonstrate how this prefetching in disk-based systems 
can yield close to in-memory performance, which paves the way for 
improved hybrid database systems. This paper proposes a novel EMA 
technique and presents a comparative study between disk-based EMA 
systems and in-memory systems running on hardware configurations 
of equivalent power in terms of the number of processors and their 
speeds. The results of the experiments conducted clearly substantiate 
that when used in conjunction with all concurrency control 
mechanisms, EMA can increase the throughput of disk-based systems 
to levels quite close to those achieved by in-memory system. The 
promising results of this work show that enhanced disk-based 
systems facilitate in improving hybrid data management within the 
broader context of in-memory systems. 
 

Keywords—Concurrency control, disk-based databases, in-
memory systems, enhanced memory access (EMA).  

I. INTRODUCTION 

HOUGH main memory sizes have increased dramatically 
and modern multicore processors provide high-end 

servers to handle large data sets and computations in memory 
[1], [2], many considerations such as shared memory access, 
data partition, persistence and reliability can limit the sole 
scalability of in-memory databases, especially with drastic 
growth of big data in businesses [3], [4]. Organisations have to 
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make major decisions to support the recent trend towards in-
memory databases and multitenant applications [5]-[7]. 
Previous works [8], [9] demonstrate that in-memory systems 
substantially outperform disk-based systems. Thus, it is a 
general view that for those organizations the best way to 
improving the performance of their transaction processing 
systems lies in switching to in-memory systems. However, 
while in-memory database systems are being developed to 
support multitenant applications and faster transactions in 
multicore processing, there are transactional contexts that 
would continue to use disk-based systems that serve as the 
primary persistence [10]-[12]. For these organizations, the 
only way of increasing throughput is by improving the 
performance of disk-based concurrency control towards 
achieving better hybrid systems. Literature [13]-[15] shows 
contention-based scheduler as a way of improving the 
performance of disk-based systems. This scheduler accepted 
the generally held view that there is a tradeoff between access 
invariance and high levels of concurrency. We challenge this 
assumption and examine how a modified variation of access 
invariance that we call enhanced memory access, (EMA) can 
be used to allow very high levels of concurrency in the pre-
fetching of data and how this pre-fetching can yield close to 
in-memory performance in disk-based systems that would lead 
towards improved hybrid data management systems [16]-[18]. 

The rest of the paper is organized as follows. Section II 
describes the proposed enhanced memory access (EMA) 
principles. Section III presents the implementation of disk-
based EMA and Section IV compares the performance of disk-
based EMA and in-memory transactions using three popular 
concurrency control (CC) mechanisms, namely two phase 
locking (2PL), wait depth limited (WDL) and optimistic CC. 
The experimental simulation conducted and performance 
results obtained are analysed in Section V. Finally, Section VI 
provides the concluding remarks and future work. 

II. PROPOSED ENHANCED MEMORY ACCESS (EMA) 

EMA is an extension of the concept of pre-fetching as 
presented in [14]. Here, all transactions are executed without 
concurrency control to pre-fetch their data into memory. Once 
transactions have been pre-fetched, their committable 
execution can be effected entirely in memory. Fig. 1 illustrates 
the basic operation of a pre-fetching system. 

In Fig. 1, transactions T1 to T10 have successfully pre-
fetched and are engaged in committable execution. While 
these transactions are processing, no memory time is 
available. However, those transactions that are engaged in disk 
access to pre-fetch their data can continue in their efforts. 
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Should any of transactions T1 to T10 be blocked, then 
memory time is made available to those transactions requiring 
such time for their pre-fetching. If any of transactions T1 to 
T10 completes, then additional memory time is made available 
to those transactions requiring such time for their pre-fetching 
– unless there are transactions that have completed their pre-
fetching, say transactions T11 to T21, that can take the place 
of the committing transactions and begin committable 
execution themselves. Given a sufficient number of available 
transactions, such a system can yield throughputs near those 
achieved by in-memory systems.  

The major impediment to the success of the process 
outlined above is that at high concurrencies, access invariance 
does not hold [19], [20]. That is, at high concurrencies, there is 
a high probability that the conditions satisfying predicates 
which determine what data is pre-fetched will change by the 
time a query is ready to embark on a committing execution 
[21], [22]. Thus data that has been pre-fetched no longer 
satisfies the required predicates consequently requiring disk 
accesses. For this reason, where pre-fetching is used, the 
number of items pre-fetched is limited. 

 

 

Fig. 1 A sample state for a pre-fetching system 
 
The basis of our proposal for EMA is to allow pre-fetching 

to the maximum limit physically possible and not to ensure 
not that conditions satisfying a predicate at pre-fetch time do 
not change between pre-fetch time and committal execution, 
but rather, that even where the conditions do change, the data 
required to satisfy the predicate are also found in memory. 
While there are several policies and mechanisms that are 
required for a full implementation of EMA, the basic policy 
that needs to be implemented is that no data item can be 
flushed from memory unless the time-stamp of its last access 
exceeds the timestamp of the oldest transaction in the system. 
Fig. 2 illustrates the basic principle of EMA. 

In Fig. 2, Tk is the newest transaction entering the system - 
it requires objects Oi and Ok. Object Oi is already in memory 
having been pre-fetched by transaction T1. Thus, transaction 
Tk merely updates the time-stamp on object Oi and both pre-
fetches and timestamps object Ok. Let us assume that 
transaction T1 is committing. On committal, it changes the 
time-stamps and values of the objects that it has used (O1, O8 
and Oi). For example, this update changes the timestamp and 
value of object Oi to reflect that the committal by transaction 

T1 was the last access to it. Naturally, a committing 
transaction is the only transaction that can change the value of 
a data item that is available to all transactions. All other 
transactions can only modify copies of objects in their own 
workspace. 

 

 

Fig. 2 An illustration of the basic principle behind EMA 
 

Object Oi cannot be flushed from memory until transaction 
Tk completes since its update time-stamp is newer than 
transaction Tk’s time-stamp. Thus, when transaction Tk 
begins its committing execution it can access the most recent 
value of object Oi from memory - (by a committing execution 
we mean an execution that has the potential to commit rather 
than merely a pre-fetch execution. We do not mean the act of 
committal). 

The memory requirements of such a system are quite 
modest relative to the capacity of modern hardware systems. 
Equation (1) can be used for approximating the maximum 
possible memory required to support EMA: 

 

 G ) 3 n) ((F = E           (1) 
 
In (1), E is memory required, F is the average number of 

objects required per transaction, n is the permitted 
concurrency (including pre-fetching) and presuming that the 
granularity of retrieval into memory is a page, G is the page 
size (in bytes). 

Future database technologies rely on both in-memory as 
well as disk-based systems that could result in hybrid database 
technologies using intelligent data management [23]-[25]. In 
the next section we present an implementation of the proposed 
EMA that paves the way for such hybrid systems. 

III. IMPLEMENTATION OF EMA 

In order for the EMA to be viable, it requires a mechanism 
that can perform the following functions economically 
1. Determine the youngest transaction in the system at the 

time a transaction commits, 
2. Determine the oldest transaction currently in the system,  
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3. Record the time of the most recent access for any data 
object,  

4. Flush unwanted data items from memory. 
In this section we present one possible implementation of 

an EMA. Fig. 3 gives an overview of the activity of 
transactions on entering the system (prior to commencing pre-
fetch activity) and how this activity determines the youngest 
(and in one special case, oldest transaction) in the system at 
any point in time. 

 

 

Fig. 3 A typical activity of transaction on entry into an EMA system 
 

As Fig. 3 shows, the system has fixed locations for the 
oldest, the current youngest and the second youngest 
transactions in the system. If the system is empty, the first 
transaction registers itself as the oldest transaction and copies 
itself to the second youngest transaction’s location. From then 
on, each transaction entering the system follows the same 
procedure. There are 5 steps involved in this procedure: 
1. The transaction copies its details to the youngest 

transaction location. 
2. The transaction accesses the second youngest transaction 

location and registers its information in the older 
transaction’s next youngest transaction slot. 

3. The transaction copies the older transaction’s details in its 
own next oldest transaction slot. 

4. The transaction copies the older transaction’s information 
to the memory location indicated by its hash address. 

5. The transaction copies itself to the previous youngest 
location. 

Thus, each transaction has access to its next and preceding 
transaction information and can access this information in a 
decentralized way – that is, no long queues are formed in 
accessing this information since the only common resource for 
which a semaphore is required in this phase is that for the 
youngest transaction location and there are relatively few 
instructions required before this resource is freed.  

 

Fig. 4 The composition of transaction markers in the EMA system 
 
The composition of the locations identifying the youngest 

transaction, second youngest transaction and each 
transaction’s marker in the transaction information table is the 
same and is shown in Fig. 4. The procedures performed by 
transactions on transaction markers on completion and exiting 
from the system are shown in Figs. 5 and 6. 

 

 

Fig. 5 Exit of the oldest transaction 
 

 

Fig. 6 Exit of a transaction that is not the oldest transaction 
 

In Fig. 6, the exiting transaction, Tk, finds that it is not the 
oldest transaction and thus does not change the value of the 
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oldest transaction location. It accesses the transaction marker 
shown in its older transaction slot, Tj, and replaces the identity 
shown on Tj’s younger transaction slot from, Tk to, Tn. It then 
accesses its own younger transaction, Tn, and replaces the 
identity shown on Tn’s older transaction slot from Tk to Tj. 
Tk then deletes itself from the transaction information table. 
Following the procedures illustrated by Figs. 3-6, it is quite 
economical to identify both the oldest and youngest 
transactions at any given moment. 

IV. PERFORMANCE OF DISK-BASED EMA AND IN-MEMORY 

SYSTEMS 

In this section, we present three broad series of 
experimental tests conducted to compare the performance 
between disk-based EMA systems and in-memory systems 
running on hardware configurations of equivalent power in 
terms the number of processors and their speeds. In the first 
series, we compare three popular concurrency control 
mechanisms, namely, two phase locking (2PL), wait depth 
limited (WDL) and optimistic concurrency control (OCC) 
under EMA and in-memory to each other for equivalent 
hardware configurations. In the second series of tests, for each 
hardware configuration, under each concurrency control 
mechanism, EMA is run under three different costing regimes. 
In the first two series of tests, where 2PL is used, it is used 
with thrashing control implemented. Finally, in the third series 
of tests, we compare the performance of 2PL concurrency 
control in disk-based EMA and in-memory systems with and 
without thrashing control. 

Under EMA, each transaction is executed twice, once to 
pre-fetch its data and once to actually commit its actions. With 
fast processors, the vast majority of a transaction’s processing 
time involves waiting while data is accessed from disk and 
thus the cost of a double execution is negligible. When 
optimistic concurrency control is used with EMA we only use 
optimistic kill concurrency control. We do not use either the 
die or die-kill optimistic method because the rationale behind 
their use is that virtual execution allows unsuccessful 
transactions to pre-fetch their data. Since under EMA data is 
pre-fetched prior to a transaction’s actual execution, further 
virtual execution merely results in extra wasted work. As well 
as comparing the performance of in-memory and EMA 
systems against each other, these three series of tests also 
compare EMA and in-memory systems to the peak 
performance of the disk-based optimistic kill method without 
EMA or access invariance operating at the maximum physical 
concurrency allowed by the hardware. Optimistic kill 
operating at the maximum physical concurrency allowed by 
the hardware is used as a reference as it yields a significantly 
better performance than any other concurrency control 
mechanism in the disk-based systems [23]. For each hardware 
configuration, we present a graph showing the total 
throughputs achieved. Fig. 7 compares total throughputs in 
systems containing 20 processors each operating at 1 GIIPS 
while Fig. 8 shows the experimental results using 10 
processors each operating at 2 GIIPS. 

From Figs. 7 and 8, we observe that the EMA systems using 

WDL or optimistic concurrency control reach a hardware-
imposed ceiling on throughput. Here, the ceiling is reached 
after a concurrency of around 10. Because of the low 
concurrencies involved, the in-memory 2PL system does not 
reach the ceiling imposed by 2PL’s propensity to create wait 
queues. However, similar to the WDL and optimistic systems, 
because of the small number of processors available, the 2PL 
EMA system also approaches the hardware imposed 
throughput ceiling at a concurrency of around 10. 

 

 

Fig. 7 Performance of disk-based EMA (no cost) & in-memory 
systems (20 Processors, 1 GIPS) 

 

 

Fig. 8 Performance of disk-based EMA (no cost) & in-memory 
systems (10 Processors, 2 GIPS) 

 
As an indication of the scalability of EMA, 2PL EMA is 

also run with 10 extra processors and 15880 extra disks 
(giving a total of 20 processors at 1 MIPS each and 31760 
disks). As shown by Fig. 9, the extra processors and disks 
bring the performance of 2PL EMA with 20 processors each 
operating at 1 GIPS, close to that of the in-memory systems 
with 10 processors each operating at 2 GIPS. 

It is noteworthy that for all transactions, WDL using EMA 
outperforms optimistic concurrency used in conjunction with 
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EMA. As well, under this hardware configuration, 2PL used in 
conjunction with EMA also outperforms optimistic 
concurrency used in conjunction with EMA. As previously 
explained the main reason between the performance of WDL 
using EMA (and in this configuration 2PL using EMA) and 
optimistic concurrency using EMA, is that in optimistic 
concurrency there is no opportunity for interleaving pre-
fetching while a transaction is being executed while under 
WDL and 2PL, processors with blocked transactions can 
spend their time usefully by pre-fetching transactions. 

The results presented in Figs. 7 and 8 assumed that there is 
no extra cost involved in administering EMA. In the second 
series of experimental tests, for each hardware configuration, 
under each concurrency control mechanism, EMA is run for 
under three different costing regimes. The first, as in the tests 
outlined above, assumes a 0 additional cost in implementing 
EMA. The second costing regime assumes that once its data is 
pre-fetched, a transaction requires no further disk access. 
However, it is also assumed that 25% of transactions require 
forked decisions and that each fork is of equal length. Thus, 
25% of transactions require two pre-fetches even though only 
one of these pre-fetches is used in actual execution. As well, 
each transaction is penalized 5000 instructions per data item as 
an overhead cost involved in maintaining EMA. Under the 
third costing scheme 10% of pre-fetched transactions have to 
re-access their data from disk once a transaction begins its real 
execution. Each transaction is penalized 5000 instructions per 
data item as an overhead cost involved in maintaining EMA. 
Thus, this series of tests provide a good indication of the 
robustness of EMA. 

 

 

Fig. 9 Performance of disk-based EMA (with costing) & in-memory 
systems (20 Processors, 1 GIPS) 

 
The results of the second series of tests of EMA are shown 

in Fig. 9 with systems containing 20 processors each operating 
at 1 GIPS and Fig. 10 shows the experimental results using 10 

processors each operating at 2 GIPS. 
Overall, from Figs. 7-10, we observe that since under all 

tested hardware configurations the addition of significant costs 
to EMA only affects its performance marginally, one can 
conclude that this series of tests indicates that the performance 
of EMA is robust to significant implementation costs. 

 

 

Fig. 10 Performance of disk-based EMA (with costing) & in-memory 
systems (10 Processors, 2 GIPS) 

 
It is known that 2PL systems are particularly prone to 

thrashing. This problem increases with contention and 
concurrency, but even in systems with low concurrencies a 
very low probability of thrashing at any point in time can still 
translate to an unacceptable incidence of thrashing given a 
sufficient number of transactions and processing cycles. In the 
third series of tests, we compare the performance of in-
memory and EMA 2PL systems with and without thrashing 
control. The thrashing control mechanism used is the 
immediate re-start of all blocked transactions once the 
proportion of blocked transactions exceeds 0.378 since this 
seems to be the most successful method in high-speed 
systems. 

The results of third series of our tests are shown in Fig. 11 
with disk-based configurations containing 20 processors 
operating at 1 GIPS per processor while Fig. 12 presents the 
results for disk-based configurations containing 10 processors 
operating at 2 GIPS per processor. Overall, we observe that 
the advantage of thrashing control diminishes with the 
reduction of concurrency. Thus in the configurations 
composed of 20 processors operating at 1GIPS, the advantage 
of thrashing control only becomes marked in the in-memory 
system past a concurrency of 15. Similarly, while the 
advantage of thrashing control for EMA is clear, the 
performance of EMA is affected more by the ceiling imposed 
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by the hardware than it is by the implementation of thrashing 
control. In the configurations composed of 10 processors 
operating at 2 GIPS, because of the very low concurrencies 
involved, the effect of thrashing control on throughput is very 
small and differences in performance are dominated by 
hardware considerations. 

 

 

Fig. 11 Performance of disk-based EMA & in-memory systems under 
2PL CC (20 Processors, 1 GIPS) 

 

 

Fig. 12 Performance of disk-based EMA & in-memory systems under 
2PL CC (10 Processors, 2 GIPS) 

V.  ANALYSIS OF RESULTS 

Our proposed EMA is a variation of the access invariance 
and pre-fetch schemes outlined in [16], [17]. However, unlike 
access invariance, EMA does not assume a constant database 
state or that a transaction will access the same set of objects in 
all its execution histories. Rather, by controlling the length of 
time that data resides in memory, it guarantees that having 
pre-fetched its data, any object that a transaction requires will 
always be in memory even if the set of data required at actual 

execution time varies from that established during pre-fetch. 
This allows a very large number of transactions to be pre-
fetched and then executed entirely in memory thus 
dramatically improving system throughput. EMA improves 
the performance of disk-based systems (using 2PL, WDL or 
optimistic concurrency control) to near that achieved by in-
memory systems. 

The result of the tests presented in this work indicate that 
when used in conjunction with all concurrency control 
mechanisms, EMA can increase the throughput of disk-based 
systems to levels quite close to those achieved by in-memory 
system using an equivalent concurrency control mechanisms. 
This performance is far better than can be achieved with any 
disk-based concurrency control mechanism that does not use 
EMA. Further, results presented in Figs. 9 and 10 showed that 
the performance of EMA was very robust to the imposition of 
additional costs associated with its implementation. 

Indeed, the addition of cost penalties far in excess of what 
one could reasonably expect in commercial applications 
reduced the performance of EMA by a very small margin. 
Besides preventing thrashing, the use of thrashing control, 
improved the performance of 2PL systems. In the systems 
with the fastest hardware at low concurrency, the performance 
of the 2PL systems was comparable to that achieved with 
WDL and optimistic concurrency control. At higher 
concurrencies, with thrashing control, the performance of 2PL 
was respectable when compared to WDL. However without 
thrashing control, the throughput of 2PL actually declined 
once the peak concurrency threshold was passed. 

VI. CONCLUSIONS AND FUTURE WORK 

Even though in-memory databases are becoming popular, 
we believe that disk-based systems would still be in use for 
several reasons as two different use cases that could be used 
selectively resulting in hybrid systems. However, to facilitate 
such hybrid database technologies, in this work, we explored 
how disk-based database systems could be improved to 
complement in-memory systems. We introduced a novel disk-
based enhanced memory access (EMA) and studied its 
performance. The main objective of proposing EMA is to 
allow very high levels of concurrency in the pre-fetching of 
data thus bringing the performance of disk-based systems 
close to that achieved by in-memory systems. The basis of our 
proposed EMA is to ensure that even when conditions 
satisfying a transaction’s predicate change between pre-fetch 
time and execution time, the data required for satisfying 
transactions’ predicates are still found in memory.  

We presented experimental tests that showed that the 
implementation of EMA allows the performance of disk-based 
systems to approach the performance achieved by in-memory 
systems. Further, the tests have also validated that the 
performance of EMA is very robust to the imposition of 
additional costs associated with its implementation. 

We believe this work opens up future research in the 
development of new hybrid database system technology that 
could apply disk-based storage selectively, where certain 
record types are written to disk, while others are managed 
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within in-memory databases.  
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