
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

206

Abstract—In-memory database systems are becoming popular

due to the availability and affordability of sufficiently large RAM and
processors in modern high-end servers with the capacity to manage
large in-memory database transactions. While fast and reliable in-
memory systems are still being developed to overcome cache misses,
CPU/IO bottlenecks and distributed transaction costs, disk-based data
stores still serve as the primary persistence. In addition, with the
recent growth in multi-tenancy cloud applications and associated
security concerns, many organisations consider the trade-offs and
continue to require fast and reliable transaction processing of disk-
based database systems as an available choice. For these
organizations, the only way of increasing throughput is by improving
the performance of disk-based concurrency control. This warrants a
hybrid database system with the ability to selectively apply an
enhanced disk-based data management within the context of in-
memory systems that would help improve overall throughput.

The general view is that in-memory systems substantially
outperform disk-based systems. We question this assumption and
examine how a modified variation of access invariance that we call
enhanced memory access, (EMA) can be used to allow very high
levels of concurrency in the pre-fetching of data in disk-based
systems. We demonstrate how this prefetching in disk-based systems
can yield close to in-memory performance, which paves the way for
improved hybrid database systems. This paper proposes a novel EMA
technique and presents a comparative study between disk-based EMA
systems and in-memory systems running on hardware configurations
of equivalent power in terms of the number of processors and their
speeds. The results of the experiments conducted clearly substantiate
that when used in conjunction with all concurrency control
mechanisms, EMA can increase the throughput of disk-based systems
to levels quite close to those achieved by in-memory system. The
promising results of this work show that enhanced disk-based
systems facilitate in improving hybrid data management within the
broader context of in-memory systems.

Keywords—Concurrency control, disk-based databases, in-
memory systems, enhanced memory access (EMA).

I. INTRODUCTION

HOUGH main memory sizes have increased dramatically
and modern multicore processors provide high-end

servers to handle large data sets and computations in memory
[1], [2], many considerations such as shared memory access,
data partition, persistence and reliability can limit the sole
scalability of in-memory databases, especially with drastic
growth of big data in businesses [3], [4]. Organisations have to

Dr. S. Kaspi is with the Northern Melbourne Institute of TAFE &

Melbourne Polytechnic, VIC 3181 Australia (e-mail:
samkaspi@melbournepolytechnic.edu.au).

Dr. S. Venkatraman is with the Northern Melbourne Institute of TAFE &
Melbourne Polytechnic, VIC 3181 Australia (phone: +613 92691108; fax:
+613 92691484; e-mail: sitavenkat@melbournepolytechnic.edu.au).

make major decisions to support the recent trend towards in-
memory databases and multitenant applications [5]-[7].
Previous works [8], [9] demonstrate that in-memory systems
substantially outperform disk-based systems. Thus, it is a
general view that for those organizations the best way to
improving the performance of their transaction processing
systems lies in switching to in-memory systems. However,
while in-memory database systems are being developed to
support multitenant applications and faster transactions in
multicore processing, there are transactional contexts that
would continue to use disk-based systems that serve as the
primary persistence [10]-[12]. For these organizations, the
only way of increasing throughput is by improving the
performance of disk-based concurrency control towards
achieving better hybrid systems. Literature [13]-[15] shows
contention-based scheduler as a way of improving the
performance of disk-based systems. This scheduler accepted
the generally held view that there is a tradeoff between access
invariance and high levels of concurrency. We challenge this
assumption and examine how a modified variation of access
invariance that we call enhanced memory access, (EMA) can
be used to allow very high levels of concurrency in the pre-
fetching of data and how this pre-fetching can yield close to
in-memory performance in disk-based systems that would lead
towards improved hybrid data management systems [16]-[18].

The rest of the paper is organized as follows. Section II
describes the proposed enhanced memory access (EMA)
principles. Section III presents the implementation of disk-
based EMA and Section IV compares the performance of disk-
based EMA and in-memory transactions using three popular
concurrency control (CC) mechanisms, namely two phase
locking (2PL), wait depth limited (WDL) and optimistic CC.
The experimental simulation conducted and performance
results obtained are analysed in Section V. Finally, Section VI
provides the concluding remarks and future work.

II. PROPOSED ENHANCED MEMORY ACCESS (EMA)

EMA is an extension of the concept of pre-fetching as
presented in [14]. Here, all transactions are executed without
concurrency control to pre-fetch their data into memory. Once
transactions have been pre-fetched, their committable
execution can be effected entirely in memory. Fig. 1 illustrates
the basic operation of a pre-fetching system.

In Fig. 1, transactions T1 to T10 have successfully pre-
fetched and are engaged in committable execution. While
these transactions are processing, no memory time is
available. However, those transactions that are engaged in disk
access to pre-fetch their data can continue in their efforts.

Enhanced Disk-Based Databases Towards Improved
Hybrid In-Memory Systems

Samuel Kaspi, Sitalakshmi Venkatraman

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

207

Should any of transactions T1 to T10 be blocked, then
memory time is made available to those transactions requiring
such time for their pre-fetching. If any of transactions T1 to
T10 completes, then additional memory time is made available
to those transactions requiring such time for their pre-fetching
– unless there are transactions that have completed their pre-
fetching, say transactions T11 to T21, that can take the place
of the committing transactions and begin committable
execution themselves. Given a sufficient number of available
transactions, such a system can yield throughputs near those
achieved by in-memory systems.

The major impediment to the success of the process
outlined above is that at high concurrencies, access invariance
does not hold [19], [20]. That is, at high concurrencies, there is
a high probability that the conditions satisfying predicates
which determine what data is pre-fetched will change by the
time a query is ready to embark on a committing execution
[21], [22]. Thus data that has been pre-fetched no longer
satisfies the required predicates consequently requiring disk
accesses. For this reason, where pre-fetching is used, the
number of items pre-fetched is limited.

Fig. 1 A sample state for a pre-fetching system

The basis of our proposal for EMA is to allow pre-fetching

to the maximum limit physically possible and not to ensure
not that conditions satisfying a predicate at pre-fetch time do
not change between pre-fetch time and committal execution,
but rather, that even where the conditions do change, the data
required to satisfy the predicate are also found in memory.
While there are several policies and mechanisms that are
required for a full implementation of EMA, the basic policy
that needs to be implemented is that no data item can be
flushed from memory unless the time-stamp of its last access
exceeds the timestamp of the oldest transaction in the system.
Fig. 2 illustrates the basic principle of EMA.

In Fig. 2, Tk is the newest transaction entering the system -
it requires objects Oi and Ok. Object Oi is already in memory
having been pre-fetched by transaction T1. Thus, transaction
Tk merely updates the time-stamp on object Oi and both pre-
fetches and timestamps object Ok. Let us assume that
transaction T1 is committing. On committal, it changes the
time-stamps and values of the objects that it has used (O1, O8
and Oi). For example, this update changes the timestamp and
value of object Oi to reflect that the committal by transaction

T1 was the last access to it. Naturally, a committing
transaction is the only transaction that can change the value of
a data item that is available to all transactions. All other
transactions can only modify copies of objects in their own
workspace.

Fig. 2 An illustration of the basic principle behind EMA

Object Oi cannot be flushed from memory until transaction
Tk completes since its update time-stamp is newer than
transaction Tk’s time-stamp. Thus, when transaction Tk
begins its committing execution it can access the most recent
value of object Oi from memory - (by a committing execution
we mean an execution that has the potential to commit rather
than merely a pre-fetch execution. We do not mean the act of
committal).

The memory requirements of such a system are quite
modest relative to the capacity of modern hardware systems.
Equation (1) can be used for approximating the maximum
possible memory required to support EMA:

 G) 3 n) ((F = E (1)

In (1), E is memory required, F is the average number of

objects required per transaction, n is the permitted
concurrency (including pre-fetching) and presuming that the
granularity of retrieval into memory is a page, G is the page
size (in bytes).

Future database technologies rely on both in-memory as
well as disk-based systems that could result in hybrid database
technologies using intelligent data management [23]-[25]. In
the next section we present an implementation of the proposed
EMA that paves the way for such hybrid systems.

III. IMPLEMENTATION OF EMA

In order for the EMA to be viable, it requires a mechanism
that can perform the following functions economically
1. Determine the youngest transaction in the system at the

time a transaction commits,
2. Determine the oldest transaction currently in the system,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

208

3. Record the time of the most recent access for any data
object,

4. Flush unwanted data items from memory.
In this section we present one possible implementation of

an EMA. Fig. 3 gives an overview of the activity of
transactions on entering the system (prior to commencing pre-
fetch activity) and how this activity determines the youngest
(and in one special case, oldest transaction) in the system at
any point in time.

Fig. 3 A typical activity of transaction on entry into an EMA system

As Fig. 3 shows, the system has fixed locations for the
oldest, the current youngest and the second youngest
transactions in the system. If the system is empty, the first
transaction registers itself as the oldest transaction and copies
itself to the second youngest transaction’s location. From then
on, each transaction entering the system follows the same
procedure. There are 5 steps involved in this procedure:
1. The transaction copies its details to the youngest

transaction location.
2. The transaction accesses the second youngest transaction

location and registers its information in the older
transaction’s next youngest transaction slot.

3. The transaction copies the older transaction’s details in its
own next oldest transaction slot.

4. The transaction copies the older transaction’s information
to the memory location indicated by its hash address.

5. The transaction copies itself to the previous youngest
location.

Thus, each transaction has access to its next and preceding
transaction information and can access this information in a
decentralized way – that is, no long queues are formed in
accessing this information since the only common resource for
which a semaphore is required in this phase is that for the
youngest transaction location and there are relatively few
instructions required before this resource is freed.

Fig. 4 The composition of transaction markers in the EMA system

The composition of the locations identifying the youngest

transaction, second youngest transaction and each
transaction’s marker in the transaction information table is the
same and is shown in Fig. 4. The procedures performed by
transactions on transaction markers on completion and exiting
from the system are shown in Figs. 5 and 6.

Fig. 5 Exit of the oldest transaction

Fig. 6 Exit of a transaction that is not the oldest transaction

In Fig. 6, the exiting transaction, Tk, finds that it is not the
oldest transaction and thus does not change the value of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

209

oldest transaction location. It accesses the transaction marker
shown in its older transaction slot, Tj, and replaces the identity
shown on Tj’s younger transaction slot from, Tk to, Tn. It then
accesses its own younger transaction, Tn, and replaces the
identity shown on Tn’s older transaction slot from Tk to Tj.
Tk then deletes itself from the transaction information table.
Following the procedures illustrated by Figs. 3-6, it is quite
economical to identify both the oldest and youngest
transactions at any given moment.

IV. PERFORMANCE OF DISK-BASED EMA AND IN-MEMORY

SYSTEMS

In this section, we present three broad series of
experimental tests conducted to compare the performance
between disk-based EMA systems and in-memory systems
running on hardware configurations of equivalent power in
terms the number of processors and their speeds. In the first
series, we compare three popular concurrency control
mechanisms, namely, two phase locking (2PL), wait depth
limited (WDL) and optimistic concurrency control (OCC)
under EMA and in-memory to each other for equivalent
hardware configurations. In the second series of tests, for each
hardware configuration, under each concurrency control
mechanism, EMA is run under three different costing regimes.
In the first two series of tests, where 2PL is used, it is used
with thrashing control implemented. Finally, in the third series
of tests, we compare the performance of 2PL concurrency
control in disk-based EMA and in-memory systems with and
without thrashing control.

Under EMA, each transaction is executed twice, once to
pre-fetch its data and once to actually commit its actions. With
fast processors, the vast majority of a transaction’s processing
time involves waiting while data is accessed from disk and
thus the cost of a double execution is negligible. When
optimistic concurrency control is used with EMA we only use
optimistic kill concurrency control. We do not use either the
die or die-kill optimistic method because the rationale behind
their use is that virtual execution allows unsuccessful
transactions to pre-fetch their data. Since under EMA data is
pre-fetched prior to a transaction’s actual execution, further
virtual execution merely results in extra wasted work. As well
as comparing the performance of in-memory and EMA
systems against each other, these three series of tests also
compare EMA and in-memory systems to the peak
performance of the disk-based optimistic kill method without
EMA or access invariance operating at the maximum physical
concurrency allowed by the hardware. Optimistic kill
operating at the maximum physical concurrency allowed by
the hardware is used as a reference as it yields a significantly
better performance than any other concurrency control
mechanism in the disk-based systems [23]. For each hardware
configuration, we present a graph showing the total
throughputs achieved. Fig. 7 compares total throughputs in
systems containing 20 processors each operating at 1 GIIPS
while Fig. 8 shows the experimental results using 10
processors each operating at 2 GIIPS.

From Figs. 7 and 8, we observe that the EMA systems using

WDL or optimistic concurrency control reach a hardware-
imposed ceiling on throughput. Here, the ceiling is reached
after a concurrency of around 10. Because of the low
concurrencies involved, the in-memory 2PL system does not
reach the ceiling imposed by 2PL’s propensity to create wait
queues. However, similar to the WDL and optimistic systems,
because of the small number of processors available, the 2PL
EMA system also approaches the hardware imposed
throughput ceiling at a concurrency of around 10.

Fig. 7 Performance of disk-based EMA (no cost) & in-memory
systems (20 Processors, 1 GIPS)

Fig. 8 Performance of disk-based EMA (no cost) & in-memory
systems (10 Processors, 2 GIPS)

As an indication of the scalability of EMA, 2PL EMA is

also run with 10 extra processors and 15880 extra disks
(giving a total of 20 processors at 1 MIPS each and 31760
disks). As shown by Fig. 9, the extra processors and disks
bring the performance of 2PL EMA with 20 processors each
operating at 1 GIPS, close to that of the in-memory systems
with 10 processors each operating at 2 GIPS.

It is noteworthy that for all transactions, WDL using EMA
outperforms optimistic concurrency used in conjunction with

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

210

EMA. As well, under this hardware configuration, 2PL used in
conjunction with EMA also outperforms optimistic
concurrency used in conjunction with EMA. As previously
explained the main reason between the performance of WDL
using EMA (and in this configuration 2PL using EMA) and
optimistic concurrency using EMA, is that in optimistic
concurrency there is no opportunity for interleaving pre-
fetching while a transaction is being executed while under
WDL and 2PL, processors with blocked transactions can
spend their time usefully by pre-fetching transactions.

The results presented in Figs. 7 and 8 assumed that there is
no extra cost involved in administering EMA. In the second
series of experimental tests, for each hardware configuration,
under each concurrency control mechanism, EMA is run for
under three different costing regimes. The first, as in the tests
outlined above, assumes a 0 additional cost in implementing
EMA. The second costing regime assumes that once its data is
pre-fetched, a transaction requires no further disk access.
However, it is also assumed that 25% of transactions require
forked decisions and that each fork is of equal length. Thus,
25% of transactions require two pre-fetches even though only
one of these pre-fetches is used in actual execution. As well,
each transaction is penalized 5000 instructions per data item as
an overhead cost involved in maintaining EMA. Under the
third costing scheme 10% of pre-fetched transactions have to
re-access their data from disk once a transaction begins its real
execution. Each transaction is penalized 5000 instructions per
data item as an overhead cost involved in maintaining EMA.
Thus, this series of tests provide a good indication of the
robustness of EMA.

Fig. 9 Performance of disk-based EMA (with costing) & in-memory
systems (20 Processors, 1 GIPS)

The results of the second series of tests of EMA are shown

in Fig. 9 with systems containing 20 processors each operating
at 1 GIPS and Fig. 10 shows the experimental results using 10

processors each operating at 2 GIPS.
Overall, from Figs. 7-10, we observe that since under all

tested hardware configurations the addition of significant costs
to EMA only affects its performance marginally, one can
conclude that this series of tests indicates that the performance
of EMA is robust to significant implementation costs.

Fig. 10 Performance of disk-based EMA (with costing) & in-memory
systems (10 Processors, 2 GIPS)

It is known that 2PL systems are particularly prone to

thrashing. This problem increases with contention and
concurrency, but even in systems with low concurrencies a
very low probability of thrashing at any point in time can still
translate to an unacceptable incidence of thrashing given a
sufficient number of transactions and processing cycles. In the
third series of tests, we compare the performance of in-
memory and EMA 2PL systems with and without thrashing
control. The thrashing control mechanism used is the
immediate re-start of all blocked transactions once the
proportion of blocked transactions exceeds 0.378 since this
seems to be the most successful method in high-speed
systems.

The results of third series of our tests are shown in Fig. 11
with disk-based configurations containing 20 processors
operating at 1 GIPS per processor while Fig. 12 presents the
results for disk-based configurations containing 10 processors
operating at 2 GIPS per processor. Overall, we observe that
the advantage of thrashing control diminishes with the
reduction of concurrency. Thus in the configurations
composed of 20 processors operating at 1GIPS, the advantage
of thrashing control only becomes marked in the in-memory
system past a concurrency of 15. Similarly, while the
advantage of thrashing control for EMA is clear, the
performance of EMA is affected more by the ceiling imposed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

211

by the hardware than it is by the implementation of thrashing
control. In the configurations composed of 10 processors
operating at 2 GIPS, because of the very low concurrencies
involved, the effect of thrashing control on throughput is very
small and differences in performance are dominated by
hardware considerations.

Fig. 11 Performance of disk-based EMA & in-memory systems under
2PL CC (20 Processors, 1 GIPS)

Fig. 12 Performance of disk-based EMA & in-memory systems under
2PL CC (10 Processors, 2 GIPS)

V. ANALYSIS OF RESULTS

Our proposed EMA is a variation of the access invariance
and pre-fetch schemes outlined in [16], [17]. However, unlike
access invariance, EMA does not assume a constant database
state or that a transaction will access the same set of objects in
all its execution histories. Rather, by controlling the length of
time that data resides in memory, it guarantees that having
pre-fetched its data, any object that a transaction requires will
always be in memory even if the set of data required at actual

execution time varies from that established during pre-fetch.
This allows a very large number of transactions to be pre-
fetched and then executed entirely in memory thus
dramatically improving system throughput. EMA improves
the performance of disk-based systems (using 2PL, WDL or
optimistic concurrency control) to near that achieved by in-
memory systems.

The result of the tests presented in this work indicate that
when used in conjunction with all concurrency control
mechanisms, EMA can increase the throughput of disk-based
systems to levels quite close to those achieved by in-memory
system using an equivalent concurrency control mechanisms.
This performance is far better than can be achieved with any
disk-based concurrency control mechanism that does not use
EMA. Further, results presented in Figs. 9 and 10 showed that
the performance of EMA was very robust to the imposition of
additional costs associated with its implementation.

Indeed, the addition of cost penalties far in excess of what
one could reasonably expect in commercial applications
reduced the performance of EMA by a very small margin.
Besides preventing thrashing, the use of thrashing control,
improved the performance of 2PL systems. In the systems
with the fastest hardware at low concurrency, the performance
of the 2PL systems was comparable to that achieved with
WDL and optimistic concurrency control. At higher
concurrencies, with thrashing control, the performance of 2PL
was respectable when compared to WDL. However without
thrashing control, the throughput of 2PL actually declined
once the peak concurrency threshold was passed.

VI. CONCLUSIONS AND FUTURE WORK

Even though in-memory databases are becoming popular,
we believe that disk-based systems would still be in use for
several reasons as two different use cases that could be used
selectively resulting in hybrid systems. However, to facilitate
such hybrid database technologies, in this work, we explored
how disk-based database systems could be improved to
complement in-memory systems. We introduced a novel disk-
based enhanced memory access (EMA) and studied its
performance. The main objective of proposing EMA is to
allow very high levels of concurrency in the pre-fetching of
data thus bringing the performance of disk-based systems
close to that achieved by in-memory systems. The basis of our
proposed EMA is to ensure that even when conditions
satisfying a transaction’s predicate change between pre-fetch
time and execution time, the data required for satisfying
transactions’ predicates are still found in memory.

We presented experimental tests that showed that the
implementation of EMA allows the performance of disk-based
systems to approach the performance achieved by in-memory
systems. Further, the tests have also validated that the
performance of EMA is very robust to the imposition of
additional costs associated with its implementation.

We believe this work opens up future research in the
development of new hybrid database system technology that
could apply disk-based storage selectively, where certain
record types are written to disk, while others are managed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

212

within in-memory databases.

REFERENCES
[1] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu. "Main-memory

hash joins on multi-core CPUs: Tuning to the underlying hardware". In
Proceedings of the International Conference on Data Engineering
(ICDE), 2013, pp. 362–373.

[2] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. Patel, and M.
Zwilling. “High-performance concurrency control mechanisms for main-
memory database”. PVLDB, 5(4):298–309, 2011.

[3] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner.
"Saphana database: data management for modern business applications".
SIGMOD Rec., vol. 40, no. 4, pp.:45–51, Jan. 2012.

[4] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
"Scalable atomic visibility with RAMP transactions". In ACM SIGMOD
Conference, 2014.

[5] D.Jacobs and S. Aulbach. "Ruminations on Multi-Tenant Databases". In
Proc. BTW, pp. 514–521, 2007.

[6] V., Ramanathan, S. Venkatraman, and S.R. Asaithambi, "A practical
cloud services implementation framework for e-businesses”, Book
Chapter In Tarnay, K., Xu, L and Imre, S. (Ed.), Research and
Development in E-Business through Service-Oriented Solutions, IGI
Global Publishers, USA, 2013.

[7] B.Mozafari, C. Curino, and S. Madden, “Resource and performance
prediction for building a next generation database cloud”. CIDR, 2013.

[8] S. Kaspi, and S. Venkatraman, "Performance Analysis Of Concurrency
Control Mechanisms For OLTP Databases". International Journal of
Information and Education Technology, 4, 4, pp. 313-318, August 2014.

[9] H. Plattner. A common database approach for OLTP and OLAP using an
in-memory column database. In SIGMOD Conference, 2009.

[10] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M.
L´eon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: "Providing
scalable, highly available storage for interactive services". In Proc. Conf.
on Innovative Data Systems Research (CIDR), 2011.

[11] I. Petrov, D. Bausch, R. Gottstein, and A. Buchmann, “Data-intensive
systems on evolving memory hierarchies,” in Proc. of Workshop
Entwicklung energiebewusster Software (EEbS 2012), 42. GI
Jahrestagung, 2012.

[12] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. "Albatross:
lightweight elasticity in shared storage databases for the cloud using live
data migration". Proc. VLDB Endow. (PVLDB), vol. 4, no. 8, 2011.

[13] P. Franaszek, J.T Robinson,.and A., Thomasian, “Access Invariance and
Its Use in High-Contention Environments”, Proceedings of the 6th
International Data Engineering Conference, Los Angeles, Feb 1990, pp
47 - 55.

[14] P. Franaszek, J.T. Robinson, and A., Thomasian, “Concurrency Control
for High Contention Environments”, ACM TODS, Vol.17, No.2, June
1992, pp 304 - 345

[15] G. Graefe. "Modern B-Tree Techniques". Foundations and Trends in
Databases, vol. 3, no. 4, pp. 203–402, 2011.

[16] J. Krueger, C. Tinnefeld, M. Grund, A. Zeier, and H. Plattner. "A case
for online mixed workload processing". In Third International
Workshop on Testing Database Systems, 2010.

[17] J. J. Levandoski, P.-A. Larson, and R. Stoica." Identifying hot and cold
data in main-memory databases". In ICDE, 2013.

[18] S. Idreos, F. Groffen, N. Nes, S. Manegold, S.Mullender, and M. L.
Kersten. "MonetDB: Two Decades of Research in Column-oriented
Database Architectures. IEEE Data Eng. Bull., vol. 35, no. 1, pp. 40–45,
2012.

[19] R. Agrawal, M. J. Carey and M. Livny. “Concurrency control
performance modeling: Alternatives and implications”. ACM
Transactions on Database Systems, 12(14): 609–654, 1987.

[20] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[21] P. A. Bernstein and N. Goodman. “Concurrency control in distributed
database systems”. ACM Computing Survey, 13(2):185–221, 1981.

[22] D. Agrawal and S. Sengupta. “Modular synchronization in distributed,
multiversion databases: Version control and concurrency control”. IEEE
TKDE, 5, 1993.

[23] S., Kaspi, “Optimizing Transaction throughput in databases via an
intelligent scheduler”, Proceedings of the 1997 IEEE International
Conference on Intelligent Processing Systems, Beijing, October, 1337 –
1341, 1997.

[24] C.H.C. Leung, and S. Kaspi, “A flexible paradigm for semantic
integration in cooperative heterogeneous databases” Proceedings of
FGCS '94, ICOT, Tokyo, December 1994.

[25] A., Thomasian, “A performance Comparison of locking methods with
limited wait depth”, IEEE Transactions on Knowledge and Data
Engineering, 9(3):421-434, 1997.

Dr. Samuel Kaspi earned his PhD (Computer Science) from Victoria
University, a Masters of Computer Science from Monash University and a
Bachelor of Economics and Politics from Monash University. He is a member
of both the Australian Computer Society (ACS) and Association for
Computing Machinery (ACM).

Sam is currently the Information Technology Discipline Leader and Senior
Lecturer of IT.at the Department of Higher Education - Business in Northern
Melbourne Institute of TAFE (NMIT) and Melbourne Polytechnic, Australia.
Prior to joining NMIT, Dr Kaspi taught at Victoria University, consulted
privately and was the CIO of OzMiz Pty Ltd.

Sam has been active in both teaching and private enterprise in the areas of
software specification, design and development. As chief information officer
(CIO) of a small private company he managed the development and
submission of five granted and three pending patents. He also managed the
submission of a successful Federal Government Comet grant under the
Commercialising Emerging Technologies category. He has also had a number
of peer reviewed publications including the Institute of Electrical and
Electronics Engineers (IEEE).

Dr. Sitalakshmi Venkatraman obtained doctoral degree in Computer
Science, from National Institute of Industrial Engineering, India in 1993 and
MEd from University of Sheffield, UK in 2001. Prior to this, she had
completed MSc in Mathematics in 1985 and MTech in Computer Science in
1987, both from Indian Institute of Technology, Madras, India. This author is
Member (M) of IAENG and Senior Member (SM) of IASCIT.

In the past 25 years, Sita's work experience involves both industry and
academics - developing turnkey projects for IT industry and teaching a variety
of IT courses for tertiary institutions, in India, Singapore, New Zealand, and
more recently in Australia since 2007. She currently works as Lecturer
(Information Technology) at the Department of Higher Education - Business
in Northern Melbourne Institute of TAFE (NMIT) and Melbourne
Polytechnic, Australia. She also serves as Member of Register of Experts at
Australia's Tertiary Education Quality and Standards Agency (TEQSA).

Sita has published seven book chapters and more than 90 research papers
in internationally well-known refereed journals and conferences that include
Information Sciences, Journal of Artificial Intelligence in Engineering,
International Journal of Business Information Systems, and Information
Management & Computer Security. She serves as Program Committee
Member of several international conferences and Senior Member of
professional societies and editorial board of three international journals.

