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Analysis of Nonlinear Pulse Propagation Characteristics
in Semiconductor Optical Amplifier for Different Input

Pulse Shapes
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Abstract—This paper presents nonlinear pulse propagation
characteristics for different input optical pulse shapes with various
input pulse energy levels in semiconductor optical amplifiers. For
simulation of nonlinear pulse propagation, finite-difference beam
propagation method is used to solve the nonlinear Schrédinger
equation. In this equation, gain spectrum dynamics, gain saturation
are taken into account which depends on carrier depletion, carrier
heating, spectral-hole burning, group velocity dispersion, self-phase
modulation and two photon absorption. From this analysis, we
obtained the output waveforms and spectra for different input pulse
shapes as well as for different input energies. It shows clearly that the
peak position of the output waveforms are shifted toward the leading
edge which due to the gain saturation of the SOA for higher input
pulse energies. We also analyzed and compared the normalized
difference of full-width at half maximum for different input pulse
shapes in the SOA.

Keywords—Finite-difference beam propagation method, pulse
shape, pulse propagation, semiconductor optical amplifier.

I. INTRODUCTION

OWADAYS, in high-speed communication systems, all-

optical signal processing techniques play an important
role to avoid electro-optic conversions which may create data-
flow bottlenecks. Semiconductor optical amplifiers (SOAs)
are widely used in many functional applications, such as
wavelength conversion, optical switching, optical signal
processing pulse reshaping, and power limiting [1], [2]. SOAs
are the key component for optical amplification and optical
switching at a very high speed because of their small size, a
low switching energy, non-linear characteristics and ability to
integrate with other optical devices [3].

Active SOAs are essential components in many recently
proposed systems for high-speed optical communications and
signal processing. Hence, a detail characterization and
theoretical modeling of the short-pulses gain saturation is
important in order to understand the fundamental limitations
of these devices and improve their performances in optical

Suchi Barua and Sven Nordholm are with the Department of Electrical and
Computer Engineering, Curtin University, Perth, Australia (e-mail:
suchi.barua@student.curtin.edu.au, s.nordholm@curtin.edu.au)

Narottam Das is with the School of Mechanical and Electrical Engineering,
The University of Southern Queensland, Toowoomba, Queensland, Australia
(e-mail: Narottam.Das@usq.edu.au), Department of Electrical and Computer
Engineering, Curtin University ~Sarawak, Miri, Malaysia (e-mail:
narottam@curtin.edu.my).

Mohammad Razaghi is with the Department of Electrical and Computer
Engineering, University of Kurdistan, Iran (email: m.razaghi@uok.ac.ir).

communication and signal processing. The purpose of
modelling an SOA is to relate the internal variables of the
amplifier with external characteristics, such as output signal
power, output saturation power [3]. The modified nonlinear
Schrodinger equation (MNLSE) is commonly used in most
pulse propagation models that included the SOA non-
linearities [4]. The pulse propagation through an SOA is
strongly dependent on the SOA input pulse shapes [5].

The main objective of this paper is to investigate the
nonlinear optical pulse propagation for different types of input
pulse shapes with different input energy levels in the SOAs for
high speed communication systems. This analysis is based on
the MNLSE considering the self-phase modulation (SPM),
two-photon absorption (TPA), group velocity dispersion
(GVD), carrier depletion (CD), carrier heating (CH), spectral-
hole burning (SHB), gain spectrum dynamics, and gain
saturation in the SOA [6]-[11]. To solve the MNLSE, finite-
difference beam propagation method (FD-BPM) is used
because of its short convergence time and excellent accuracy
of the simulated results [6], [7]. For simulation of nonlinear
pulse propagation with small propagation steps, FD-BPM is
considered as the best method comparing other methods [7]-
[11].

In this paper, we analyzed and compared the single pulse
propagation characteristics. We also investigated the
normalized difference of full width at half maximum (FWHM)
after propagation of pulses for different types of input pulse
shapes. This paper is organized as follows. Section II
describes the theoretical model of nonlinear pulse propagation
in SOAs. The simulation results and discussion are presented
in section III. Finally, the conclusion is in Section IV.

II. THEORETICAL MODEL OF SOAS

The following MNLSE is used for the simulation of
nonlinear pulse propagation in SOAs with different input
pulse shapes [4], [6]-[11].
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Here, we introduce the frame of the local timer (=7-z/v,)
which propagates with the group velocity v, at the centre

frequency of an optical pulse. The slowly varying envelope
approximation is used in (1), where the temporal variation
change of the complex envelope function is very slow
compared with the cycle of an optical field. In (1), V(7,z) is

the time domain complex envelope function of an optical
pulse, |y(.,-)p corresponds to the optical power, and f, is the

GVD. y is the linear loss, y,, is the TPA coefficient,

by (= wyn, / cA) is the instantaneous SPM term due to the
instantaneous nonlinear refractive index n, (Kerr effect),
wy (=27 f;) is the centre angular frequency of the pulse, c is
the velocity of light in vacuum, A(=wd/T’) is the effective
area (d and w are the thickness and width of the active region,
respectively, and I'is the confinement factor). g, (7) is the
saturated gain due to CD g,is the linear gain, W is the

saturation energy,7,is the carrier lifetime, f)is the SHB

function, P, is the SHB saturation power, 7, is the SHB
relaxation time, and oy and «; the line width enhancement
factor associated with the gain changes due to the CD and CH.
Agy(7) 1is the resulting gain change due to the CH and TPA
u(s) is the unit step function, 7, the CH relaxation time, /, is
the contribution of stimulated emission and free-carrier
absorption to the CH gain reduction, and 4, is the contribution
of TPA. Finally, 4, and 4, are the slope and the curvature of
the linear gain at @, respectively, while B, and B, are constants

describing changes in these quantities with saturation. In this
simulation, the gain spectrum of an SOA is approximated by
the following second-order Taylor expansion in Aw:

o) | (A P g(z,0)| ®)

o ‘wo 2 o’ o

g(r,0)=g(r,0)) +Aw

The coefficients ag(f,w)/aw‘m and azg(r,w)/awz‘ are
o @

related to 4, A, B;and B, as given by (5) and (6). We assumed
the same values of 4, A4, B, and B, as for an AlGaAs/GaAs
bulk SOA.

Generally, the fast Fourier transformation BPM (FFT-BPM)
is used for analysis of the optical pulse propagation in optical
fibers by successive iterations of the Fourier transformation
and the inverse Fourier transformation. In the FFT-BPM, the
linear propagation term (GVD term) and phase compensation
terms (other than GVD, first- and second- order gain spectrum
terms) will be separated in the nonlinear Schrodinger equation
for the individual consideration of the time and frequency
domain for the optical pulse propagation. However, in our
model, (1) includes the dynamic gain change terms, i.e., the
first- and second- order gain spectrum terms which are the last
two terms of the right side in (1). Therefore, it is not possible
to separate (1) into the linear propagation term and phase
compensation term, and it is difficult to calculate (1) using the
FFT-BPM. For this reason, we have used the FD-BPM to
solve this MNLSE [7]-[11].

III. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results of single nonlinear optical
pulse propagation and normalized difference of FWHM are
discussed for different input pulse shapes. For the simulation,
the parameters of a bulk SOA (AlGaAs/GaAs, double
heterostructure) is used. The parameters are listed in Table I
(71, 9]

TABLE1
LIST OF THE PARAMETERS USED IN SIMULATION [7], [9]

Parameters Symbols  Values Units
Length of SOA L 500 um
Effective area A 5 pm?
Centre frequency of the pulse fo 349 THz
Linear gain 2o 92 cm™
Group velocity dispersion B 0.05 psiem’!
Saturation energy Wi 80 pJ
Linewidth enhancement factor due to the oy 3.1
carrier depletion
Linewidth enhancement factor due to the  or 2.0
carrier heating
The contribution of stimulated emission h, 0.13 cm” pJ!
and free carrier absorption to the carrier
heating gain reduction
The contribution of two-photon absorption  h, 126 fsem™! pJ?
Carrier lifetime T 200 Ps
Carrier heating relaxation time Teh 700 Fs
Spectral-hole burning relaxation time Tshb 60 Fs
Spectral-hole burning saturation power P 28.3 4
Linear loss ¥ 1.5 cm’
Instantaneous nonlinear Kerr effect ny 0.70  cm’TW’!
Two-photon absorption coefficient Pap 1.1 cm'W!
Parameter describing second-order Taylor A, 0.15 fs um’!
expansion of the dynamically gain B -80 fs
spectrum. A, -60 fs? pum’
B, 0 £

A. Nonlinear Optical Pulse Propagation Characteristics

For the simulation of nonlinear pulse propagation in SOA,
the length of the SOA is considered 500pum and we have
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obtained all the results with a propagation step Az of 10um.
Different types of input pulse shapes are considered, such as
(i) Secant hyperbolic pulse, (ii) Gaussian pulse, and (iii)
Lorentzian-shaped pulse.

Fig. 1 illustrates a simulation model for the propagation of
nonlinear optical pulses in an SOA. An optical pulse is
injected into the input facet of the SOA, where the input pulse
position is at z = 0. The pulse propagated over the length 500-
um of the SOA. Here, r is the local time, |y(;0)p is the

intensity (power) of input pulse (z = 0) and |y, pis the
intensity (power) of the output pulse after propagating a
distance z (=500-um) at the output side of SOA [11].

Input Pulse Output Pulse

Wz, 0)12 Wz 2)?

v

SOA >

Fig. 1 Schematic diagram for the simulation of nonlinear propagation
pulses in SOA. Here, |V (z, 0) " and |V (1, z) |* are the input and
output (after propagating a distance z) pulses of the SOA

Fig. 2 shows the simulation results of nonlinear optical
pulse propagation characteristics in an SOA, when the input
pulse width is 10 ps. The output waveforms for Secant
hyperbolic pulse shape, Gaussian pulse shape and Lorentzian
pulse shape are shown in Fig. 2 (i) when the input pulse
energies are (a) 2 pJ, (b) 1 pJ and (c) 500 fJ, respectively. The
sampling time step (A¢) is considered as 0.025 ps. It is clearly
observed that higher output pulse energy is achieved by
Gaussian pulse and lower output energy is achieved by
Lorentzian pulse for all the level of input pulse energies (high
to low). The calculated peak output powers are 4.2693 W,
4.5268 W, and 4.0091 W for Secant hyperbolic, Gaussian and
Lorentzian pulses, respectively when input energy is 2 pJ. For
the input energy 1 pJ, the calculated peak output powers are
2.89 W, 3.06 W and 2.71 W for Secant hyperbolic, Gaussian
and Lorentzian pulses, respectively. However, when the input
energy is low (i.e., 500 fJ), the calculated peak output powers
are 1.77 W, 1.88 W, and 1.66 W for Secant hyperbolic,
Gaussian and Lorentzian pulses, respectively. From these
results, it can be confirmed that the higher output pulse energy
can be achieved for higher input energy for all those three
pulse shapes and vice versa. As the input pulse width is very
shorter than the considered carrier lifetime, the leading edge of
the pulse saturates the amplifier and the trailing edge
experiences a lower gain, so the output pulse shape becomes
asymmetric. Comparing all three pulse shapes with different
input pulse energy levels, it can be observed that the output
pulse shapes become more asymmetric for higher input energy
and less asymmetric for the lower input energy levels.
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Fig. 2 (i) Output waveform for Secant hyperbolic pulse, Gaussian
pulse and Lorentzian pulse when input energies are: (a) 2 pJ, (b) 1 pJ
and (c) 500 fJ
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Fig. 2 (ii) Output spectra for Secant hyperbolic pulse, Gaussian pulse
and Lorentzian pulses when input energies are: (a) 2 pJ, (b) 1 pJ and
(c) 500 £J

Fig. 2 (ii) shows the frequency spectra of propagated output
pulses for Secant hyperbolic pulse shape, Gaussian pulse
shape and Lorentzian pulse shapes when the input pulse
energies are: (a) 2 pJ, (b) 1 pJ, and (c) 500 fJ. The frequency

spectra were obtained by performing the FFT on the temporal
pulse shapes as shown in Fig. 2 (i). The output spectral shape
shifting is observed toward the lower frequency side, which is
due to the gain saturation of the SOA and the SPM effects. For
weak input pulse energies (i.e., <500 fJ), none of the output
frequency spectra has been shifted toward the lower frequency
side. It can be clearly seen from these figures that the output
spectra is red-shifted and the amount of frequency shift is ~ -
8.3 GHz for Secant hyperbolic and Gaussian pulses when the
input pulse energy is 2 pJ and 1 pJ. While there is no red
shifting is occurring for the Lorentzian pulse when the input
pulse energy is 2pJ and 1 pJ. A wider spectral broadening is
observed for Gaussian pulse compared to the other pulses,
when the input energy is 2 pJ. Besides that some oscillatory
structures (i.e., dips) are observed in the upper frequency side
of the frequency spectra, which is due to the SPM effects [7],
[8]. The physical mechanism behind the spectral shift and
distortion is the SPM, occurring as a result of index
nonlinearities induced by the gain saturation [7]-[9]. From the
simulated results, it has confirmed that there is no red shifting
occurs in Lorentzian pulses for the considered pulse energies
(i.e., 500 fJ ~ 2 pJ).

A. Normalized Difference of FWHM

Fig. 3 shows the normalized difference of FWHM versus
input FWHM for different input pulse energies for (a) Secant
hyperbolic pulse, (b) Gaussian pulse and (c) Lorentzian pulse.
To achieve the results, autocorrelation trace is used to analyze
the series of data with normalization waveforms. We have
investigated how the output FWHM varies with the input
FWHM and input pulse energies for different input pulse
shapes. For particular input pulse energy, a higher percentage
of increased output FWHM can be found for lower input
FWHM and vice versa. For example, when the input pulse
energy is 2 pJ, the output FWHM increases by 15.2%,
19.29%, 24.4%, 35% and 62.5% for the input FWHM of 10
ps, 7 ps, 5 ps, 3 ps and 1 ps, for the Secant hyperbolic pulse.

The similar results have been obtained for all three
considered pulse shapes in this case study. It has been also
observed that with the decrease of input pulse energy the
percentage of increased output FWHM decreases for all input
FWHM. From above observation, it can be concluded that, for
a higher input energy with lower in put FWHM, the variation
of output FWHM is the highest and lowest variation in output
FWHM can be found for lower input energy with higher
FWHM. Also in this case study, similar results have been
calculated for all those three input pulses. But highest
percentage of increased output FWHM has been calculated for
Lorentzian pulse for all considered input energy along with
input FWHM. For example, variation of output FWHM
increases by 16%, 15.2% and 12.5% for Lorentzian pulse,
Secant hyperbolic and Gaussian pulse respectively, when
input pulse energy is 2 pJ and the input FWHM is 10 ps.
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Fig. 3 Normalized difference of FWHM versus input FWHM for
different input pulse energy levels for (a) Secant hyperbolic pulse, (b)
Gaussian pulse, and (c) Lorentzian pulse

IV. CONCLUSION

In this paper, nonlinear optical pulse propagation
characteristics have been analyzed for different input pulse

shapes with different input pulse energy levels in SOAs. The
higher output pulse energy is achieved for Gaussian pulse
shape and the lower output pulse energy is achieved for
Lorentzian pulse shape for all the considered input pulse
energy levels. From the output frequency spectra, it has clearly
observed that red shifting does not occur for Lorentzian pulse
for the considered input pulse energies (i.e., 500 fJ ~ 2 plJ).
The difference between the output and input FWHM of pulses
also has been calculated for different input pulse shapes with
the increase of input FWHM after normalizing the output
pulse power. From the simulated results, it can be concluded
that the percentage of FWHM increases with the decrease of
input FWHM and decreases with the increase of input
FWHM. The simulation results are useful for next generation
high-speed optical network/ communication systems as the
device has nonlinearities.
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