
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

133

Abstract—Software Architecture is the basic structure of

software that states the development and advancement of a software
system. Software architecture is also considered as a significant tool
for the construction of high quality software systems. A clean design
leads to the control, value and beauty of software resulting in its
longer life while a bad design is the cause of architectural erosion
where a software evolution completely fails. This paper discusses the
occurrence of software architecture erosion and presents a set of
methods for the detection, declaration and prevention of architecture
erosion. The causes and symptoms of architecture erosion are
observed with the examples of prescriptive and descriptive
architectures and the practices used to stop this erosion are also
discussed by considering different types of software erosion and their
affects. Consequently finding and devising the most suitable
approach for fighting software architecture erosion and in some way
reducing its affect is evaluated and tested on different scenarios.

Keywords—Software Architecture, Architecture Erosion,
Prescriptive Architecture, Descriptive Architecture.

I. INTRODUCTION

HE main objective of software architecture is to classify
the requirements having considerable influence on

application structure. Business risks related in developing a
technical solution can be reduced in designing a good
architecture as a good design possess the quality of flexibility
that can control the natural drift occurring with time in
hardware or software technology or user requirements. The
overall impact of architecture design decisions and the
tradeoffs between quality attributes is considered by an
architect. The software architecture should only represent the
structure of the system by hiding the implementation details
and controlling both the quality attribute and the functional
requirements [1].

During the lifetime of any typical software system it
undergoes evolution and creation of different prescriptive and
descriptive architecture at different times. If a person doesn’t
have enough knowledge about what the implemented and
intended architecture is then the probability of the occurrence
of software erosion turns high [2], [4].

For all the software process models, architectural decisions
are made early in the development lifecycle as depicted in Fig.
1.

Consider the evolutionary model in Fig. 2, where the
architecture design behaves as a core of software system
carried out just after the analysis of preliminary requirements.

Sundus Ayyaz is with the College of Electrical & Mechanical Engineering,

National University of Sciences and Technology (NUST), Rawalpindi,
Pakistan (e-mail: sundus.ayyaz@ceme.nust.edu.pk).

Fig. 1 Software Life Cycle [5]

Fig. 2 Evolutionary Model [5]

The failure to follow a proper design results in architecture

erosion. Therefore, the architectural decisions affects the
whole life time of the software system [3], [5].

A. Architecture Degradation

 The ideal case is when prescriptive architecture is equal
to descriptive architecture, but with time prescriptive and
descriptive change independently with the changing demands
of the customer causing architectural degradation. Over time,
the design decisions that are straightly applied to descriptive
architecture results in either architectural drift (new
descriptive decisions do not violate prescriptive) or erosion
(descriptive decisions violate prescriptive decisions) [2], [11].

A Four Method Framework for Fighting
Software Architecture Erosion

Sundus Ayyaz, Saad Rehman, Usman Qamar

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

134

Fig. 3 Causes of Architectural Degradation [11].

B. Architecture Erosion

Software suffers from software architecture erosion, when it
undergoes frequent changes during its lifetime due to
technological evolution, process optimization or integrating
new systems with existing software architecture. Therefore,
the internal structure of the software goes through an
invariable decay that can occur in any stage of the software
development life cycle. At the architectural level, the software
erosion can be observed from the deviation of the descriptive
architecture from that of prescriptive architecture as the
software evolves with time resulting in un-intended
modifications (violations) of the software architecture [4,18].
The effect of architecture erosion causes the dissatisfaction of
stakeholder’s requirements as the changes become difficult to
employ on the software and in the worst, it can even lead to
failure of software projects. Almost every other project suffers
from erosion at some phase in software development cycle
unless some effort is done to overcome it. Architecture erosion
causes multiple defects in software such as increase in internal
complexity with the addition of new functionality, growing
time to modify the software and time-to-market, decreased
quality, increasing the test effort for maintenance of software
etc. at the same time reducing the developer’s productivity as
much time is spent on understanding the complex existing
parts of the software. The end result is: costs rises and
productivity falls.

It becomes yet further expensive when software erosion
results in a "software landslide", when the measure of erosion
attains a point where the software cannot be maintained or
improved any further and rewrite becomes the only solution,
with all the employed costs and risks. As the situation gets
worst, the only possible option remain is to build the software
from scratch or in other words ‘Rewrite’ the software but this
decision is exceptionally costly and risky with regards to
deadlines or budget. As rewriting involves the new software to
achieve all of the functionality that the existing software
possess therefore no time is left for making an improvement in
the software putting both the project and organization on stake
[18]. That is why the software, and mainly its architecture, has
to be able to deal with numerous requests for change to
permanently stay in working condition [18].

C. Types of Software Architecture Erosion

The general types of software architectural erosion include:
a. Architectural Rule violations- For re-architecting or future

development certain design rules should be followed e.g.
avoidance of strict layering between subsystems [4], [6].

b. Unreachable Code- Also known as the dead code which
is never executed nor required for any purpose but it is
still messing the code base contributes towards
architectural erosion [7].

c. ‘Copy & Paste’ Codes- Although code duplication is
popular for the purpose of reuse and implementation
efficiency as copy-paste is the most common method but
as the size increases the maintainability cost increases
such as a fixing an error or modification in one clone case
is likely to have to be disseminated to the other clone
examples [4], [8].

d. Metric outliers- Include deeper class hierarchies, vast
packages and complex code [4]

e. Dependency- Between packages and modules reduces
reusability, obstructs maintenance, prevents extensibility,
limit testability and bounds a developer capability to
understand the outcomes of change [13].

f. Cyclic Dependencies- Are the worst type of erosion.
Cycles tend to sneak into design. For instance, if A and B
are placed in an alpha package, and one is placed in a num
package, a cyclic dependency between alpha and num
exists even though the class structure is acyclic. They
should be managed or readily eliminated as they end up in
fragile code [9].

D. Symptoms of Software Architecture Erosion

There are certain symptoms that indicate erosion in
architectural designs. They are:
a. Inflexibility- makes the software difficult to change as a

change can cause violation in dependant modules thus
exceeding the time to perform that change, therefore the
manager’s fear so much that they eventually refuse to
allow any changes in software [10].

b. Brittleness- is closely related to inflexibility causing the
software to rupture every time it is modified hence the
manager’s fear that the software will rupture in some
unanticipated way whenever they approve a fix leading
towards costly rework [10]. Such software is not viable to
maintain as they become worst as every change and bug
fix takes considerably longer. In such cases, the
developers lose the control on their software and it
becomes really hard for them to work with such software
and there is a force to rewrite the software.

c. Serenity- is the failure to reuse components from same or
different software projects as most of the software
involves much similar type of modules written by other
developers. Serenity appears when the developers find out
that the work and risk necessary to split the wanted parts
of the software from the unwanted parts are too big to
accept and so the software is simply rewritten instead of
reused [10].

d. Reduced Effectiveness and Efficiency- due to delay in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

135

software releases, budget overruns, quality defects etc.
e. Increase in time, complexity, effort and risk for

implementing new functionality and a decrease in
productivity and quality [4].

E. Risks of Software Architecture Erosion

There are several risks associated with software architecture
[16], for example in the development team where new hires
may not understand the system and old employees have to
work hard, not resisting the stress, results in high turnover
which is a cause for architectural decay as the knowledge of
architecture is lost when they leave. Similarly inflexible
software is another problem as it is very difficult to enhance
and extend it. There is a chance that a modification can even
cause an introduction of new bug in software therefore the
software must be highly maintainable. The development team
also has not a constant relationship with the software’s life as
there is a possibility that any member can leave the team and
the knowledge of the architecture and software associated with
him or her also disappears. Software Architecture erodes more
when new hires make mistakes and take much time to follow
up the project readily. Architecture will further erode when the
new hires lacking enough knowledge about architecture would
seek to make modifications to the system.

F. Real-time Example of Architecture Erosion

In recent years, many real-time examples of software
architecture erosion have been observed, According to
Bernhard and Frederic [12], architecture erosion occurs when
the system becomes deprecate and congested. The example
explains that simple software was created in March 2004
containing only 4 packages, few months later new features
were added it was still going fine but in May 2005 a first
cyclic dependency appeared, in June 2006 another cyclic
dependency was observed and eventually in 2009 the software
was surrounded by many intertwines. This project cannot be
easily maintained now. The example clarifies that the
architecture was perfect at the start, after making some
modifications it was still going good but with time its structure
was degraded with the introduction of dependency therefore a
person cannot actually stop the erosion from getting in to
place however measures can be done to fight against it by
reducing it to some extent.

II. PROPOSED SOLUTION

A lot of tools and methods can be used for stopping
software erosion; one must work hard to find out the best
approach that seems suitable for any particular project such as
for the responsibility of a manager, he should create a culture
of organization supporting and encouraging employees for the
fight against software erosion, if this step is not taken than
eventually no one will take interest in erosion. Similarly, for
the role of architect or a developer, he should have enough
knowledge about different causes of architectural erosion and
different approaches for fighting it.

From the study of literature on different causes and
problems associated with Software Architecture Erosion it is

inferred that the number of practices have been used for
stopping architecture erosion but the four most important
methods for fighting against architecture erosion is formulated
in this paper described as A four Method Framework;
including Management Support, Maintenance, Evolvability
and Refactoring as key practices.

Fig. 4 A Four Method Framework for Fighting Software Architecture
Erosion

A. Management Support

For the long term feasibility of the software project,
Management obligation is very important for fighting
architecture erosion otherwise it would become very much
difficult for developer to deal with the problem in a timely
manner. Therefore, if management support is provided to
developers they can implement different patterns to stop the
erosion effects depending upon the availability of tools,
domain of the project, maturity of erosion crisis etc giving rise
to a culture where fighting erosion is treasured. The culture
includes functionalities like the assignment of tasks to
individual persons, distribution of architectural knowledge and
responsibilities and a regular communication between working
group. In this way, different teams focus on different
approaches contributing towards long life of software while
making the development team feel dominant. Management
should also create a supportive and motivating environment
where appropriate training should be provided to new hires so
that they must understand the system and senior employees
would not be over burdened thus avoiding turnover and
reducing the risk that the architectural knowledge would be
lost with the person leaving the organization. The architectural
knowledge should be stored in documented form with
sufficient accuracy of good design decisions and using the
most appropriate notation to help the new employees get the
understanding of prior employees.

B. Maintenance

According to the IEEE standard for software maintenance,
maintenance is defined as “Modifying different parts of a
software system after delivering it to customer to correct
faults, enhance performance or other quality attributes by
additional functionality or to adapt the product in a customized

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

136

context” [19]. For a good architecture design, its maintenance
is very much important as there is always a risk while
modifying a piece of crappy software that whether the change
would introduced a new bug in a system resulting in faults,
therefore faults must be discovered and fixed. There is a risk
that a change in a system has caused side effects to other parts
in some unintended way e.g. addition of new hardware devices
(computers, networks) or software change such as new
operating system. Changes in customer requirements usually
occurs when business environment changes or when new
technology arrives in market or when the expectations of
customer augments due to non-functional requirements such
as safety and performance of a system or due to market
competition therefore changes should be maintained as best as
possible. Maintenance can either be performed by architects or
developers or an additional maintenance team must be
assigned. By boosting quality of architecture or code,
maintainability can be improved without significant impact on
the software’s ability to evolve.

Fig. 5 Distribution of Maintenance Effort [15]

Fig. 5 illustrates that for any software, the changes are
always expected and their distribution according to a survey is
clarified here thus maintenance is the second major factor for
fighting architecture erosion.

Lifetime of software is elongated when there is high
maintainability thus lowering development risks.
Maintainability is also considered as a quality attribute that
only focuses on the existing short-range attempts for changes
but does not emphasize on the long-standing conservation of
the software. For example, the maintainability of a software
system can be enhanced by improving the quality of designs
and code but it would not have any sufficient affect on the
capability of the software for evolvability. Maintenance
activities do not consider the structural modifications as they
are not involved in the maintainability of the software systems
because any addition to software can result in code clones thus
reducing maintainability and leading towards architecture
erosion. Therefore evolvability should be considered as a
separate quality attribute factor necessary for software
architecture consistency.

C. Evolvability

At present, software maintenance and management support
for the architecture design are not sufficient for long-life
software systems, evolvability must also be considered as a
significant factor for fighting architecture erosion.
Evolvability is defined as an ability to keep maintainability for
long run.

According to Lehman’s laws of software evolution [18], the
evolution of a software system is aimed at the development of
that software during the software lifecycle from its initial
phase to closing phase. So there is a need to tackle
evolvability unambiguously during the whole lifecycle to
extend the productive lifetime of the software system.

Every successful software system is prone to evolution so
their architecture certainly drifts. If not any defensive work is
taken on, such as building flexibility for future known
changes, the software will start to wear away and the cost and
risk for development increases.

Evolvability is also considered as a significant quality
attribute towards maintaining the architecture design to
strengthen the capability of software system to easily adjust to
frequently changing needs and stay in working condition.
Evolvability also contributes towards improvement of the
existing system.

Therefore, for implementing something new in the software
its architecture should frequently be visualized as the software
is modified and compare the prescriptive architecture with the
descriptive one to check how close or different they actually
look or any changes are required or not. If vision of
prescriptive architecture is not possible, reverse-engineering
from descriptive architecture can be used. Many basic free
tools as well as advanced commercial tools are available now
for the purpose of architecture visualization and checking.

Fig. 6 Prescriptive vs. Descriptive Architecture [14]

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

137

A prescriptive architecture is an ideal visualization deduced
from the architectural style and behavior whereas the
descriptive architecture is extracted from the source code to
get the actual components and association between them in the
implementation. The goal of following this method is to
remove inconsistencies with respect to the implementation.
For this purpose different components of the architecture is
studied in detail in order for carrying out different evolution
requirements.

Fig. 6 visualizes a prescriptive and a descriptive architecture
which goes through evolution as new changes are
implemented.

D. Refactoring

Refactoring is a method used to reverse software erosion
when it is identified. Refactoring is a technique for
improvement of the restructuring of code by changing its
internal structure without altering its external behavior [20]. It
is a process of improvement for existing software.
Refactoring is very advantageous for the elimination of
architecture destruction, removal of code cycles, trimming off
dead code, combining of code clones and for solving metric
outliers since they clear the way of other refactoring by
fighting software erosion [4]. Many different types of
architecture erosion can be eliminated with Refactoring.
Fig. 7 shows that most software architectures after a long time
look like this and the original architecture image of the
software is hardly noticeable. The figure shows that design
defects are erased by several small and local corrections,
missing parts are attached via knapsack, as a result such
architecture erodes to failure before implementation or moving
into function as it suffers from the lack of development
qualities such as evolvability and maintainability.

Fig. 7 Software Architecture after much time [17]

The simple steps for architecture refactoring involves,

Start creating software architecture in small increments where
each increment includes:

1. Top-down improvement activities to specify and complete
the software architecture.

2. Bottom-up refactoring activities for plotting and clearing
out conflicting or inadequate design decisions [17].

Architecture Refactoring is a means of guidance for
architects for classifying possible problem in software
architecture and providing solutions for solving such
problems.

For architecture refactoring analysis or testing the resulting
architecture after it has been refactored is compared with the
preliminary architecture, also any of the verification technique
can be used for the guarantee of quality [17]. Refactoring can
also be reversed for example renaming of entities can also be
undone or similarly merging modules can still be unmerged
therefore, refactoring patterns can be implicitly understood
and applied in reverse direction. Apparently, refactoring
should only be applied in that direction which contributes
towards improving the quality of architecture and eliminating
architectural erosion and it never means that the chain of
applying refactoring steps would only be reversed in a planned
order.

III. EVALUATION AND RESULTS

The proposed approach is applied and evaluated on various
architectural styles. There are various different types of
architecture smells from a huge set of software architectures
that led to software architecture erosion. Some of them are;
cyclic dependencies, overloaded module responsibilities,
different classes with same methods, ambiguous entities in the
architecture, module dependency on system, alternate
modules, architecture showing more than one solution for a
problem, high cohesion between modules, higher layers
accessing functionalities of lower layer without any
requirement.

In this paper we have evaluated and tested our approach on
few examples of software architecture for reducing the design
rot and increasing the life of design.

Suppose consider a simple example of cyclic dependency
between packages containing the related group of classes in
the given architecture. Fig. 8 shows an acyclic package
network.

Fig. 8 Acyclic Package Network

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

138

Fig. 8 shows no cycles as the GUI depends directly on the
package User Login and transfers data to Database Server
package. The Register/Login package has no other
dependencies as no other package is required therefore the
testing and release can be done with nominal amount of work.

Addition of a Cycle in Package Network- when a designer
wants to display a message on screen from invalid User
Package so it is send up to GUI as message display is
controlled by it resulting in a dependency of invalid User on
GUI.

Fig. 9 A cycle sneaks in

As the cycle is introduced between package so any person

functioning with Login/Register want to release this package,
a test suite is required to be built with all other packages in the
architecture such as invalid User, GUI, User Login etc this
becomes obviously a terrible situation resulting in a
considerable increase in the workload of developers and
architects just because of a particular uncontrolled
dependency.

This cyclic dependency should be removed from the
structure to fight architecture erosion. Refactoring can be
applied for breaking the cycle in this scenario; for this, a new
package should be added, this change in the architecture
should be maintained without any defect. For adding any new
feature in the system it should possess Maintenance quality.

Maintenance means architecture design can be continuously
modified without introducing any bugs in the system, it allows
addition of a new package in the architecture, the classes
contained in invalid User package are now placed in that new
package which is Message Manager. This change in the
architecture can only be welcomed if the system possesses the
development quality method Evolvability.

Evolvability in the given architecture means that the system
will easily adjust to the new addition in the architecture and
remain in working condition for longer run. In short, the
system would embrace the change instead of avoiding it.

Management Support is very important for supporting this
change in the architecture as an undocumented initial
architecture of the system would definitely results in

architecture erosion as the architects would never get an idea
which module is the basis of cyclic dependency and how it
would be resolved.

Now the two packages the invalid User and GUI depends
upon this new package.

Hence, this example clarifies that for removing the cycles
and breaking dependencies new package should be introduced
in the architecture and the classes are to be moved from old
package to new packages thus changing the package
architecture. The final structure is shown in the following
diagram.

The example also shows that the architectural strength of
any software depends entirely on these four methods, absence
of any one will escort the architecture design towards erosion
as refactoring techniques can never be applied to an
architecture which is not maintainable and for a long run
maintainability of a software it should be evolvable.
Correspondingly, no change can be brought to the system
without Management Support.

Fig. 10 Architecture after removal of dependency

The result of applying the proposed approach on some other

different architectural styles is summarized in the Table I. The
Results in the given table shows that the consequence of
excluding any one of the proposed method in the devised
approach indeed leads to the software architecture erosion.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

139

TABLE I
CAUSES OF SOFTWARE ARCHITECTURE EROSION

Possible Solutions To
Architecture Smells

Proposed Approach Results

Management
Support
(Applied? YES/NO)

Maintenance
(Applied?
YES/NO)

Evolvability
(Applied?
YES/NO)

Refactoring
(Applied?
YES/NO)

Decoupling Layer YES YES NO YES System will not adjust to change due to lack of evolvibility,
results in shorter life of system

Renaming Entities NO YES YES YES Unavailability of initial architecture document results and
lack of management support in bringing the change, results
in architecture degradation.

Merging Modules YES NO YES YES Lack of maintenance results in producing errors in system
brought up by the change

Stable Layering
Establishment

YES YES YES NO No refactoring means No change is made in the system to
establish stable layering for avoidance of relaxed layering.

IV. CONCLUSION

In this paper, different problems resulting from different
types of architectural erosion are presented that leads to high
cost, time issues or even failure of costly projects. After
deeply analyzing the types, symptoms and risks of software
architecture erosion, an optimal approach known as “a four
method framework” is devised. By following the proposed
approach in designing architectures; one would be able to fight
erosion to a greater extent gaining architectural strength in
software systems. Management support, Maintainability,
Evolvability and Refactoring are the key practices for the
achievement of architecture improvement, if all of them
should be emphasized orderly. Management support is a very
important factor and is needed for the planning and
management of the rest of three methods. Architecture smells
themselves are the indicators that an effective approach is
needed for fighting the nearly occurring architecture erosion in
a cost-effective way for getting the best overall effect.

Finally, this paper has indicated the most suitable approach
for reducing the effect of erosion by considering that for
bringing up any change in the system through refactoring;
management support, maintenance and evolvability play a
significant role when applied collectively to the architecture
but the tools used for removing architecture erosion are still in
development stage. Most significant case studies and
improved evaluations of the available tools are required so that
practitioners can assess different results and adopt the most
suitable ones to their circumstances.

REFERENCES
[1] “Chapter 1: What is Software Architecture” Msdn library, Retrieved

from <http://msdn.microsoft.com/en-us/library/ee658098.aspx>
[2] Taylor, Richard N., Medvidovic, Nenad, & Dashofy, Eric. (2009).

Software architecture: foundations, theory and practice. John Wiley &
Sons Inc.

[3] Mehwish Riaz, Muhammad Sulaman, Husnain Naqvi, “Architectural
Decay during continuous software evolution and impact of ‘Design for
Change’ on software Architecture” published in Journal of Advances in
Software Engineering and Communications in Computer and
Information Science, 2009, Volume 59, 119-126.

[4] M M Lehman, J F Ramil, P D Wernick, D E Perry, W M Turski,
"Metrics and laws of Software Evolution The Nineties
View,"metrics,p.f14, Fourth International Software Metrics
Symposium(METRICS'97),1997.

[5] John Reekie, Rohan McAdam, "A Software Architecture Primer
Paperback." (2009)

[6] Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using Dependency
Models to Manage Complex Software Architecture, OOPSLA. (2005)

[7] "Dead code detection and removal." Aivosto-Programming tools for
Software Developers. Aivosto Oy, Helsinki, Finland, n.d. Web.
<http://www.aivosto.com/vbtips/deadcode.html>.

[8] "Code duplication detection." SolidSource- About Software
Development and Maintenance. N.p., 17-Feb-2010. Web.
<http://www.solidsourceit.com/blog/?tag=code-clone>.

[9] "Software Rot - Manage those Dependencies." kirkk.com. N.p., 06-
APR-2009. Web. <http://techdistrict.kirkk.com/2009/04/06/software-rot-
manage-those-dependencies/>.

[10] Martin, Robert C.: Design Principles and Design Patterns.
[11] Richard N. Taylor, Nenad Medvidovic, Eric M. Dashofy. "Software

Architecture: Foundations, Theory and Practice."(2009)
[12] "Stop the Architecture Erosion of Eclipse And Open Source Projects at

EclipseCon 2011." Anthony Dahanne’s blog. N.p., 24-MAR-2011 <
http://blog.dahanne.net/2011/03/24/stop-the-architecture-erosion-of-
eclipse-and-open-source-projects-at-eclipsecon-2011/>.

[13] Knoernschild, Kirk. "That Rotting Design." kirkk.com. N.p., 21-DEC-
2009. Web. <http://techdistrict.kirkk.com/2009/12/21/that-rotting-
design/>.

[14] Medvidovic, Nenad, and Vladimir Jakobac. "Using software evolution
to focus architectural recovery." Autom Software Eng (2006) 13: 225–
256. Springer Science.

[15] Dr. Eden, Amnon H. "Software Evolution and Validation." (2008).
[16] "Bad Software Architecture." 0xcafebabe's space. N.p., 22-MAR-2010.

Web. <http://huionn.wordpress.com/2010/03/22/bad-software-
architecture/>.

[17] Stal, Michael. "Software Architecture Refactoring." Siemens AG
Corporate Technology, 2008.

[18] Bode, Stephan: “On the Role of Evolvability for Architectural Design”,
16-AUG-2010.

[19] IEEE Std. 1219-1998, IEEE Standard for Software Maintenance. IEEE
Computer Society.

[20] Caroli, Paulo. "Refactoring to Patterns- A practical look into Agile
approach on Evolutionary Design." IndicThreads.com Conference on
Java Technology 2007, 07-FEB-2008.

