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Abstract—Laplace transformations have wide applications in 

engineering and sciences. All previous studies of modified Laplace 
transformations depend on differential equation with initial 
conditions. The purpose of our paper is to solve the linear differential 
equations (not initial value problem) and then find the general 
solution (not particular) via the Laplace transformations without 
needed any initial condition. The study involves both types of 
differential equations, ordinary and partial. 
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I. INTRODUCTION 

IFFERENTIAL equation has wide usage and 
applications, for example it used for studying 

electrochemical cells [1], Harmonic Resonant [2], Control [3], 
Fractional Differential Equations [4], Transient Heat 
Conduction [5], Relaxation Model [6], electrical engineering 
problems [7], and others. Let ),( ytf  be continuous at all 

points ),( yt  in some rectangle 
 

byyattR  00 ,:
    

 (1) 

 
and bounded in R, say, 
 

kytf ),(
       

 (2) 

 
for all ),( yt  in R, then the initial value problem 
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has at least one solution )( ty  [8]-[11]. 

This solution defined for all t in the interval  
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rectangular R and bounded say, 
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for all ),( yt  in R initial value problem (3) has one solution

)(ty . 
This solution is defined at least for all t in that 

 0tt  . It can be obtained by Picard's iteration 

method that is the sequence 
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Equation (6) converges to that solution )(ty [12]. 

If  tf  is piecewise regular and of exponent order 
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 (7) 

 

with abscissa which converges to 0 , then for any number 

00 s  , 
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converges uniformly for all values of s such that 

0ss   where 

))(( tfL  is called the Laplace transformation of  tf  and is 

denoted by )(sF . Equivalently  tf  is called the inverse 

Laplace transformation of )(sF  and is denoted by [13], [14]. 
 

))(()( 1 sFLtf           (9) 
 
where 







ja

ja

st dsesF
j

tf )(
2

1
)(


        (10) 

II.  NEW MAIN RESULT 

All previous studies used Laplace transformations for 
finding the particular (not general) solution of following n-the 
order linear non homogenous differential equation with 
constant coefficients with initial conditions (initial value 
problem): 
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In this section an expanding of the previous usage is 

introduced to involve the studying of finding the general 
solution (not particular) of (11) without initial conditions (12) 
using the method of Laplace transformations. The 
homogenous form of (11) is represented as  
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then the characteristic equation of (13) is 
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By taking the Laplace transformations of left hand side of 

(11), one can has 
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It implies that: 
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where )(1 srn 

is a polynomial of degree n-1. 

One can write the Laplace transformation of right hand side 
of (15) as 
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where )( sH  is a function of s and, )( sp m

 is a 

polynomial of degree m, then from (15) and (16), one can 
have 
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then by using inverse Laplace transformation, y(t) becomes 
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where the first part represents the homogenous solution )(tyh

 

and the second part represents the particular solution R (t), and 
so it agreement with (18). 

Remark 1: In [15], )(tf  is solved as exponent and 

trigonometric functions. In this work )(tf  expanded to general 

functions. 
Case 1: If )()()()( 1 srspsHsK nm   and )(sH  is 

a polynomial equation, then )(sK  is a polynomial equation 

such that 
 

mnv
spsg

sK
sY

mn

v  ,
)()(

)(
)(        (20) 

 
In this case one can use the method of partial frictions in 

order to solve inverse Laplace of (20) and then find )(ty . 

Case 2: If )(sH  not a polynomial, then one can write 
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For solving (21), one can use the convolution method of 

first part. For solving second part, the partial frictions method 
can use.  

We are in a position to introduce the following proposition: 
Proposition 1: The general solution )(ty of linear equation 

represent the inverse Laplace transforms where 
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The studying of general solution of homogenous linear 

equation (22) was introduced as follows: 
By the same manner of proof of Proposition (1), one can 

have 
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Since 0)( tf then 0)( sh . So (23) becomes 
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Therefore one can use the method of partial frictions in 

order to solve inverse Laplace of (24) and then find )(ty . 

Case 3: If all the roots of characteristic equation )(sgn
are 

distinct, then 
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Therefore by using the inverse of (25), one can have 
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which represents the general solution. 

Case 4: If 21 tt   , then 
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Therefore by using the inverse of (28), one can have 
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which represents the general solution. 
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therefore by using the inverse of (30), one can have 
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which represents the general solution. 
 Now we are in a position to introduce the following 
proposition: 

Proposition 2: The general solution )(ty of homogenous 

linear equation 
Equation (31) represents the inverse Laplace transforms 

where 
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III. EXAMPLES 

For clear above propositions, one can present the following 
examples: 

Example 1: (Linear Differential Equation): For solving the 
differential equation 
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then by using Laplace transformations of given equation, one 
can have 
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Then by using partial frictions  
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finally by using inverse Laplace transformations, the general 
solution has the form 
 

)sin()cos()( 321 tAtAeAty t    

 
From theory of solving differential equation it is known that 

the number of constants in general solution must be equal to 
the order of given differential equation. Two constants are 
calculated. By derivative, one can have 
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Then the general solution is 
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Example 2: Nonlinear Differential Equations: For solving 

the differential equation 
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Then by using Laplace transformations, one can have 
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Then for using convolution theorem of first part and partial 
frictions of its second part, )(sY has the form: 
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By using inverse Laplace transforms, the general solution is 
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Example 3: Homogenous Differential Equation: For 

solving the homogenous differential equation 
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Then by using Laplace transformations, one can have 
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By using inverse Laplace transforms, the general solution is 
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Example 4: Partial Differential Equation: For solving the 
linear partial differential equation 
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One can solve it with respect to variable t, then 
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By calculating , ,t tt xxv v v  , the resulting is  
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So the general solution has the form 
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IV. CONCLUSION  

In summary, we have shown here that it is possible to solve 
linear differential equation via Laplace transformations 
without needed any initial condition. This solution involves 
the general and the equation is in famous or general design 
(not in initial value problem). Our proposed method shares 
many common features with recent theoretical studies of 
solutions. All our finding results are in good agreement with 
the recent solved methods. 
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