Probing Anomalous $W W \gamma$ and $W W Z$ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider

I. Turk Cakir, A. Senol, A. T. Tasci, O. Cakir

Abstract

We study the anomalous $W W \gamma$ and $W W Z$ couplings by calculating total cross sections of two processes at the LHeC with electron beam energy $\mathrm{Ee}=140 \mathrm{GeV}$ and the proton beam energy $\mathrm{Ep}=7$ TeV , and at the FCC-ep collider with the polarized electron beam energy $\mathrm{Ee}=80 \mathrm{GeV}$ and the proton beam energy $\mathrm{Ep}=50 \mathrm{TeV}$. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as $(0.975,0.118)$ and $(0.285$, 0.009) for the anomalous ($\Delta \kappa \gamma, \lambda \gamma$) and ($\Delta \kappa z, \lambda z$) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101, 0.065) and $(0.320,0.002)$ at an integrated luminosity of $\mathrm{L}_{\mathrm{int}}=100 \mathrm{fb}^{-1}$.

Keywords-Anomalous Couplings, Future Circular Collider, Large Hadron electron Collider, W-boson and Z-boson.

I. Introduction

THE $S U(2) \times U(1)$ gauge symmetry of the Standard Model (SM) results in the triple gauge boson interactions. A precise determination of the trilinear gauge boson couplings is necessary to test the validity of the SM and the presence of new physics up to a high energy scale. Since the tree-level couplings of the $W W \gamma$ and $W W Z$ vertices are fixed by the SM, any deviations from their SM values would indicate the new physics beyond the SM. The photoproduction of the W and Z bosons through triple gauge boson interactions in the leptonhadron colliders HERA+LC and in the Large Hadron electron Collider (LHeC) has been studied theoretically in the papers [1]-[3] and [4], respectively. An investigation of the potential of the LHeC to probe anomalous $W W \gamma$ coupling has been presented in [5], [6].

The present bounds on the anomalous $W W \gamma$ and $W W Z$ couplings are provided by the LEP [7], Tevatron [8], [9] and LHC [10], [11] experiments.

Recently, the ATLAS [10], [11] and CMS [12], [13] Collaborations have established updated constraints on the anomalous $\mathrm{WW} \gamma$ and $W W Z$ couplings from the $\gamma W(Z)$ and $W^{+} W$ production processes. The results from ATLAS and
I. Turk Cakir is with the Istanbul Aydin University, Applications and Research Center for Advanced Studies 34295, Sefakoy, Istanbul, Turkey (phone: $+90-5333815529$; fax: $+90-212-4441428 / 22206$; e-mail: ilkay.turkcakir@gmail.com).
A. Senol and A. T. Tasci are with Kastamonu University, Department of Physics, 37100, Kuzeykent, Kastamonu, Turkey (e-mail: asenol@kastamonu.edu.tr, atasci@kastamonu.edu.tr).
O. Cakir is with Istanbul Aydin University, Applications and Research Center for Advanced Studies 34295, Sefakoy, Istanbul, Turkey and Ankara University, Department of Physics, 06100, Tandogan, Ankara, Turkey (email: ocakir@science.ankara.edu.tr).

CMS experiments based on two-parameter analysis of the anomalous couplings are given in Table I.
In this work, we investigate the $e p \rightarrow v e^{q \gamma X}$ and $e p \rightarrow v e^{q Z X}$ processes with anomalous $W W \gamma$ and $W W Z$ couplings at the high energy electron-proton collider LHeC and FCC-ep (Future Circular Collider-electron proton) collider [14]. LHeC is considered to be realised by accelerating electrons 140 GeV and colliding them with the 7 TeV protons. We take into account the energies of the FCC-ep as 80 GeV for electron beam and 50 TeV for proton beam. We also consider the possibility of the electron beam polarization at LHeC [15] and FCC-ep which extends the sensitivity to anomalous triple gauge boson couplings.

TABLE I
The Available 95\% C.L. Two-Parameter Bounds on Anomalous
Couplings ($\Delta \kappa \gamma, \lambda \gamma$) and ($\Delta K z, \lambda Z$) FROM the Atlas and CMS EXPERIMENTS

	ATLAS	CMS	ATLAS (upper- lower)	CMS (upper- lower)
$\Delta \kappa \gamma$	$-0.420,0.480$	$-0.250,0.250$	0.900	0.500
$\lambda \gamma$	$-0.068,0.062$	$-0.050,0.042$	0.130	0.092
$\Delta \kappa z$	$-0.045,0.045$	$-0.160,0.180$	0.090	0.340
$\lambda \mathrm{z}$	$-0.063,0.063$	$-0.055,0.055$	0.126	0.110

II. ANOMALOUS COUPLINGS

The $W W \gamma$ and $W W Z$ interaction vertices are described by an effective Lagrangian with the coupling constants $\mathrm{g}_{\mathrm{wW}}^{\gamma}$ and $g_{W W Z}$ and dimensionless parameter pairs ($\left.\Delta \kappa \gamma, \lambda \gamma\right)$ and ($\Delta \kappa z$, $\lambda z)$

$$
\begin{align*}
& L=i g w w_{\gamma}\left[g_{1}^{\gamma}\left(W_{\mu \nu}^{\dagger} W^{\mu} A^{v}-W^{\mu \nu} W_{\mu}^{\dagger} A_{\nu}\right)+\kappa_{\gamma} W_{\mu}^{\dagger} W_{v} A^{\mu v}+\frac{\lambda_{v}}{m_{W}^{2}} W_{\rho \mu}^{\dagger} W_{v}^{\mu} A^{v \rho}\right]+ \\
& i g w w_{Z}\left[g_{1}^{Z}\left(W_{\mu \nu}^{\dagger} W^{\mu} Z^{v}-W^{\mu \nu} W_{\mu}^{\dagger} Z_{v}\right)+\kappa_{Z} W_{\mu}^{\dagger} W_{v} Z^{\mu v}+\frac{\lambda_{Z}}{m_{W}^{2}} W_{\rho \mu}^{\dagger} W_{v}^{\mu} Z^{v \rho}\right] \tag{1}
\end{align*}
$$

where $g_{w W \gamma}=g_{e}=g \sin \theta_{W}$ and $g_{w W Z}=g \cos \theta_{W}$. In general these vertices involve six C and P conserving couplings [16]. However, the electromagnetic gauge invariance requires that $g_{1}^{\gamma}=1$. The anomalous couplings are defined as $\kappa_{V}=1+\Delta \kappa_{V}$ where $V=\gamma, Z$ and $g_{1}^{Z}=1+\Delta g_{1}^{Z}$. The $W_{\mu \nu}, Z_{\mu \nu}$ and $A_{\mu \nu}$ are the field strength tensors for the W - boson, Z - boson and photon, respectively.
The one-loop corrections to the $W W \gamma$ and $W W Z$ vertices within the framework of the SM have been studied in [17][19]. These corrections to the $\Delta \kappa_{V}$ and λ_{V} have been found to be of the order of 10^{-2} and 10^{-3}, respectively. The values of the
couplings $\kappa_{\gamma}=\kappa_{Z}=1$ and $\lambda_{\gamma}=\lambda_{Z}=0$ correspond to the case of the SM. Since unitarity restricts the $W W \gamma$ and $W W Z$ couplings to their SM values at very high energies, the triple gauge couplings are modified as $\Delta \kappa_{V}\left(q^{2}\right)=\Delta \kappa_{V}(0) /\left(1+q^{2} / \Lambda^{2}\right)^{2}$ and $\lambda_{V}\left(q^{2}\right)=\lambda_{V}(0) /\left(1+q^{2} / \Lambda^{2}\right)^{2}$ where $V=\gamma, Z$. The q^{2} is the square of momentum transfer into the process and Λ is the new physics energy scale. The $\Delta \kappa_{V}(0)$ and $\lambda_{V}(0)$ are the values of the anomalous couplings at $q^{2}=0$. We assume the values of the anomalous couplings remain approximate constant in the interested energy scale $\left.\left(\Lambda^{2}>q\right)^{2}\right)$. We take $\Delta \kappa_{V}$ and λ_{V} as free parameters in the considered range and find the bounds on these couplings effectively. For the numerical calculations, we have implemented interactions terms in the CalcHEP [20].

Fig. 1 Representative Feynman diagrams for subprocess $e q \rightarrow v e^{\gamma q^{\prime}}$

Fig. 2 Representative Feynman diagrams for subprocess $e q \rightarrow v e^{Z q^{\prime}}$

III. Production Cross Sections for LHEC

According to the effective Lagrangian, the anomalous vertices for triple gauge interactions $W W \gamma$ and $W W Z$ are presented in the Feynman graphs as shown in Figs. 1 and 2. In order to calculate the cross sections for the process $e p \rightarrow v{ }_{e} q \gamma X$ and $e p \rightarrow v e^{q Z X}$, we apply the transverse momentum cut on photon and jet as $p_{T}^{\gamma}>50 \mathrm{GeV}, p_{T}^{j}>20 \mathrm{GeV}$; missing transverse momentum cut $p_{T}^{v}>20 \mathrm{GeV}$, pseudorapidity cuts $\left|\eta_{\gamma, j}\right|<3.5$; a cone radius cut between photons and jets $\Delta R_{\gamma, j}>$ 1.5. Using these cuts and the parton distribution functions of CTEQ6L [21], the total cross sections of the process $e p \rightarrow v e^{q \gamma X}$ as a function of anomalous couplings $\Delta \kappa_{\gamma}$ and λ_{γ} for $E_{e}=140$ GeV with electron beam polarizations $P_{e}= \pm 0.8$ and $P_{e}=0$ are
presented in Figs. 3 and 4. In Figs. 5 and 6, the total cross sections of the $e p \rightarrow v e^{q Z X}$ process are given for the same energy. It is clear from these figures that the polarization ($P_{e}=-0.8$) enhances the cross sections according to the unpolarized case.

Fig. 3 The cross section depending on anomalous coupling $\Delta \kappa \gamma$ of the process $e p \rightarrow v e^{q \gamma X}$ at $\mathrm{Ee}=140 \mathrm{GeV}$ for different electron beam b polarizations

Fig. 4 The cross section depending on anomalous coupling $\lambda \gamma$ of the process $e p \rightarrow v e^{q \gamma X}$ at $\mathrm{Ee}=140 \mathrm{GeV}$ for different electron beam polarizations

Fig. 5 The cross section depending on anomalous $\Delta \kappa_{Z}$ coupling of the process $e p \rightarrow v_{e} q Z X$ for $E_{e}=140 \mathrm{GeV}$

Fig. 6 The cross section depending on anomalous λ_{Z} coupling of the process $e p \rightarrow v e^{q Z X}$ for $E_{e}=140 \mathrm{GeV}$

IV. ANALYSIS FOR LHEC

In order to estimate the sensitivity to the anomalous $W W \gamma$ and $W W Z$ couplings, we use the χ^{2} function:

$$
\begin{equation*}
\chi^{2}\left(\Delta \kappa_{V}, \lambda_{V}\right)=\left(\frac{\sigma_{S M}-\sigma\left(\Delta \kappa_{V}, \lambda_{V}\right)}{\Delta \sigma_{S M}}\right)^{2} \tag{2}
\end{equation*}
$$

where $\quad \Delta \sigma_{S M}=\sigma_{S M} \sqrt{\delta_{\text {stat. }}^{2}} \quad$ with $\quad \delta_{\text {stat. }}=1 / \sqrt{N_{S M}} \quad$ and $N_{S M}=\sigma_{S M} L$. In our calculations, we consider that two of the couplings ($\Delta \kappa, \lambda$) are assumed to deviate from their SM value. We estimate the sensitivity to the anomalous couplings at 95 C.L. at the LHeC for the integrated luminosities of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$. The contour plots of anomalous couplings in $\Delta \kappa_{\gamma}{ }^{-} \lambda_{\gamma}$ plane for the integrated luminosities of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ at electron beam energies $E_{e}=140 \mathrm{GeV}$ are given in Fig. 7. The contour plots of anomalous couplings in $\Delta \kappa_{Z}{ }^{-\lambda}{ }_{Z}$ plane for the integrated luminosities of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ at electron beam energies of $E_{e}=140 \mathrm{GeV}$ are shown in Fig. 8.

Fig. 7 Two dimensional 95\% C.L contour plot anomalous couplings in the $\lambda_{\gamma}-\Delta \kappa_{\gamma}$ plane for the integrated luminosity of $10 \mathrm{fb}^{-1}$ and 100 fb^{-1} at electron beam energy $E_{e}=140 \mathrm{GeV}$ with polarization $P_{e}=-0.8$

Fig. 8 Two-dimensional 95\% C.L contour plot of anomalous couplings in the $\lambda_{Z}-\Delta \kappa_{Z}$ plane for the integrated luminosity of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ at electron beam energy $E_{e}=140 \mathrm{GeV}$ with polarization

$$
P e=-0.8
$$

The difference of the upper and lower bounds on the anomalous couplings $\Delta \kappa_{V}$ and $\lambda_{V}($ where $V=\gamma, Z)$ can be written as

$$
\begin{equation*}
\delta \Delta \kappa_{V}=\Delta \kappa_{V}^{\text {upper }}-\Delta \kappa_{V}^{\text {lower }}, \delta \lambda_{V}=\lambda_{V}^{\text {upper }}-\lambda_{V}^{\text {lower }} \tag{3}
\end{equation*}
$$

The current limits on anomalous couplings and the difference of the upper and lower bounds for electron beam energies of 140 GeV with integrated luminosities $L_{i n t}=10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ at LHeC with the unpolarized (polarized) electron beam are given in Table II. We have obtained two-parameter limits on $\delta \Delta \kappa_{\gamma}$ and $\delta \lambda_{\gamma}$ which can be compared to the ATLAS and CMS results. However, the limits on $\delta \lambda_{Z}$ is found to be much more sensitive than the current limits.

TABLE II
The 95\% C.L. Current Limits on the Anomalous Couplings and the Difference of the Upper and Lower Bounds for Electron Beam ENERGY OF $\mathrm{E}_{\mathrm{E}}=140$ GEV WITH $\mathrm{L}_{\mathrm{INT}}=100 \mathrm{FB}^{-1}$ FOR POLARIZED AND

UnPOLARIZED ELECTRON BEAM

$\mathbf{P e}$	$\Delta \boldsymbol{\kappa} \boldsymbol{\gamma}$	$\delta \Delta \boldsymbol{\kappa} \boldsymbol{\gamma}$	$\boldsymbol{\lambda} \boldsymbol{\gamma}$	$\delta \lambda \boldsymbol{\gamma}$
-0.8	$-0.182,0.793$	0.975	$-0.039,0.079$	0.118
0	$0.192,0.798$	0.990	$-0.041,0.081$	0.122
0.8	$0.251,0.844$	1.095	$-0.047,0.086$	0.133
$\mathbf{P e}$	$\Delta \boldsymbol{\kappa} \mathbf{Z}$	$\delta \Delta \boldsymbol{\kappa} \mathbf{Z}$	$\boldsymbol{\lambda} \mathbf{z}$	$\delta \boldsymbol{z} \mathbf{z}$
-0.8	$-0.143,0.142$	0.285	$-0.001,0.008$	0.009
0	$0.273,0.089$	0.362	$-0.003,0.009$	0.012
0.8	$0.253,0.215$	0.468	$-0.004,0.010$	0.014

V. Production Cross Sections for FCC-EP

For calculate the cross sections for the process $e p \rightarrow v{ }_{e} q \gamma X$ and $e p \rightarrow v e^{q Z X}$, we apply the transverse momentum cut on photon and jet as $p_{T}^{\gamma}>20 \mathrm{GeV}, p_{T}^{j}>20 \mathrm{GeV}$; missing transverse momentum cut $p_{T}^{v}>20 \mathrm{GeV}$, pseudorapidity cuts $\eta_{\gamma, j}$ the range of between -5 and 0 ; Using these cuts and the parton distribution functions of CTEQ6M [14], the total cross sections of the process $e p \rightarrow v \gamma q X$ as a function of anomalous couplings $\Delta \kappa_{\gamma}$ and λ_{γ} for $E_{e}=80 \mathrm{GeV}$ with $\left(P_{e}= \pm 0.8\right)$ and
without ($P_{e}=0$) electron beam polarization are presented in Figs. 9 and 10. It is clear from these figures that the polarization $\left(P_{e}=-0.8\right)$ enhances the cross sections according to the unpolarized case.

Fig. 9 The cross section depending on anomalous coupling $\Delta \kappa_{\gamma}$ of the process $e p \rightarrow v{ }_{e}{ }^{q \gamma X}$ at $E_{e}=80 \mathrm{GeV}$ for different electron beam polarizations

Fig. 10 The cross section depending on anomalous λ_{γ} coupling of the process $e p \rightarrow v{ }_{e} q \gamma X$ for $E_{e}=80 \mathrm{GeV}$

Fig. 11 The cross section depending on anomalous $\Delta \kappa_{Z}$ coupling of the process $e p \rightarrow v e^{q Z X}$ for $E_{e}=80 \mathrm{GeV}$

The cross sections depending on anomalous couplings $\Delta \kappa_{Z}$ and λ_{Z} of the process $e p \rightarrow v e^{q Z X}$ for $E_{e}=80 \mathrm{GeV}$ with $P_{e}= \pm 0.8$
and without $\left(P_{e}=0\right)$ electron beam polarization are presented in Figs. 11 and 12.

Fig. 12 The cross section depending on anomalous λ_{Z} coupling of the

$$
\text { process } e p \rightarrow v e_{e} q Z X \text { for } E_{e}=80 \mathrm{GeV}
$$

VI. Analysis for FCC-EP

The contour plots of anomalous couplings in $\Delta \kappa_{\gamma}-\lambda_{\gamma}$ plane for the integrated luminosities of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ at electron beam energies $E_{e}=80 \mathrm{GeV}$ are given in Fig. 13. For the process $e p \rightarrow v{ }_{e} q Z X$, we make analysis of the signal and backgrounds when Z decays leptonically, $Z \rightarrow l^{+} l^{-}$where $l=e, \mu$. The contour plots of anomalous couplings in $\Delta \kappa_{Z}-\lambda Z$ plane for the integrated luminosities of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ at electron beam energies of $E_{e}=80 \mathrm{GeV}$ are presented in Fig. 14.
The difference of the upper and lower bounds on the anomalous couplings $\Delta \kappa_{V}$ and λ_{V} (where $V=\gamma, Z$) can be written as

$$
\begin{equation*}
\delta \Delta \kappa_{V}=\Delta \kappa_{V}^{\text {upper }}-\Delta \kappa_{V}^{\text {lower }}, \delta \lambda_{V}=\lambda_{V}^{\text {upper }}-\lambda_{V}^{\text {lower }} \tag{4}
\end{equation*}
$$

The current limits on anomalous couplings and the difference of the upper and lower bounds for electron beam energies of $\mathrm{E}_{\mathrm{e}}=80 \mathrm{GeV}$ with integrated luminosities $100 \mathrm{fb}^{-1}$ at FCC-ep with the unpolarized (polarized) electron beam are given in Table III. We have obtained two-parameter limits on $\delta \Delta \kappa_{\gamma}$ and $\delta \lambda_{\gamma}$ which can be compared to the ATLAS and CMS results. However, the current limits on $\delta \lambda_{Z}$ is found to be much more sensitive at the FCC-ep.

TABLE III
THE 95\% C.L. Current Limits on the Anomalous Couplings and the Difference of the Upper and Lower Bounds for Electron Beam
Energy Of $\mathrm{E}_{\mathrm{E}}=80 \mathrm{GEV}$ wITH $\mathrm{L}_{\mathrm{int}}=100 \mathrm{FB}^{-1}$ FOR POLARIZED ELECTRON BEAM

Pe	$\Delta \kappa \gamma$	$\delta \Delta \kappa \gamma$	$\lambda \gamma$	$\delta \lambda \gamma$
-0.8	$-0.100: 1.001$	1.101	$-0.026: 0.039$	0.0650
Pe	$\Delta \kappa \mathrm{z}$	$\delta \Delta \kappa \mathrm{z}$	$\lambda \mathrm{z}$	$\delta \lambda \mathrm{z}$
-0.8	$-0.019: 0.301$	0.320	$-0.0011: 0.0012$	0.0023

Fig. 13 Two dimensional 95\% C.L contour plot anomalous couplings in the $\lambda_{\gamma}-\Delta \kappa_{\gamma}$ plane for the integrated luminosity of $10 \mathrm{fb}^{-1}$ and 100 fb^{-1} at electron beam energy $E_{e}=80 \mathrm{GeV}$ with polarization $P_{e}=-0.8$

Fig. 14 Two-dimensional 95\% C.L contour plot of anomalous couplings in the $\lambda_{Z}-\Delta \kappa_{Z}$ plane for the integrated luminosity of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ at electron beam energy $E_{e}=80 \mathrm{GeV}$ with polarization

VII. CONCLUSION

The $W W \gamma$ and $W W Z$ anomalous interactions through the processes $e p \rightarrow v e^{q \gamma X}$ and $e p \rightarrow v e^{q Z X}$ can be studied independently at the LHeC and FCC-ep. We obtain twoparameter accessible ranges of triple gauge boson anomalous couplings at LHeC and FCC -ep with the polarized electron beam at the energies $E_{e}=140 \mathrm{GeV}$ and $\mathrm{E}_{\mathrm{p}}=7 \mathrm{TeV}$, and $E_{e}=80$ GeV and $\mathrm{E}_{\mathrm{p}}=50 \mathrm{TeV}$, respectively. Our limits compare with the results from two-parameter analysis given by ATLAS and CMS Collaborations [10]-[13]. We find that the sensitivities to anomalous couplings $\Delta \kappa_{V}(V=\gamma, Z)$ will be of the order of 10^{-1}, which is an order of magnitude larger than the SM loop level sensitivity of 10^{-2}, however a measurement of these couplings above 10^{-2} would offer a possible new physics signal. We conclude that the anomalous couplings λ_{γ} and λ_{Z} can be well constrained with the sensitivity of the order of 10^{-2} and 10^{-3} at the FCC-ep with polarized electron beam. The LHeC and FCC-ep could give complementary information about anomalous couplings compared to Tevatron and LHC.

ACKNOWLEDGMENT

The work of O.C. is partially supported by State Planning Organisation (DPT) - Ministry of Development under the grant No. DPT2006K-120470. A.S. would like to thank Abant Izzet Baysal University Department of Physics where of part this study was carried out for their hospitality

REFERENCES

1] U. Baur, et al., "Measuring the WW γ Vertex in Single W Production at ep Colliders", Nucl. Phys. B, vol.325, 1989, pp. 253.
[2] C.S. Kim, et al., "Photoproduction of massive gauge bosons in highenergy electron - proton collisions", Z. Phys. C, vol. 53, 1992, pp. 601608.
[3] S. Atag, et al., "Anomalous WW gamma vertex in gamma p collision", Phys. Rev. D, vol. 63, 2001, pp. 033004.
[4] C. Brenner Mariotto, et al., "Analysis of the photoproduction of massive gauge bosons at the LHeC", Phys. Rev. D, vol. 86, 2012, pp. 033009.
[5] S. Sudhansu Biswal, et al., "Anomalous Triple Gauge Vertices at the Large Hadron-Electron Collider", arXiv:1405.6056 (hep-ph), 2014, pp. 11.
[6] I.T. Cakir, et al., "Search for Anomalous WW γ and WWZ couplings with polarized e-beam at the LHeC", Acta. Phys. Pol. B, vol. 45, 2014, pp. 1947-1962.
[7] S. Schael, et al., ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Collaborations, "Electroweak Measurements in ElectronPositron Collisions at W-Boson-Pair Energies at LEP", Phys. Rept., vol. 532, 2013, pp. 119-244.
[8] T. Aaltonen, et al., "CDF Collaboration, Measurement of the W+WProduction Cross Section and Search for Anomalous WW γ and WWZ Couplings in pp Collisions", Phys. Rev. Lett., vol. 104, 2010, pp. 201801.
[9] V.M. Abazov, et al., D0 Collaboration, "Limits on anomalous trilinear gauge boson couplings from WW, WZ and $\mathrm{W} \gamma$ production in pp collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ ", Phys. Lett. B, vol. 718, 2012, pp. 451-459.
[10] G. Aad, et al., ATLAS Collaboration, "Measurement of W+Wproduction in pp collisions at $\sqrt{\mathrm{s}}=7 \mathrm{TeV}$ with the ATLAS detector and limits on anomalous WWZ and WW γ couplings", Phys. Rev. D, vol. 87, pp. 112001, 2013. Erratum-ibid. D, vol. 88, 2013, pp. 079906.
[11] G. Aad, et al., ATLAS Collaboration, "Measurements of $\mathrm{W} \gamma$ and $\mathrm{Z} \gamma$ production in pp collisions at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$ with the ATLAS detector at the LHC", Phys. Rev. D, vol. 87, 2013, pp. 112003.
[12] S. Chatrchyan, et al., CMS Collaboration, "Measurement of the W+WCross section in pp Collisions at ${ }_{\mathrm{s}}=7 \mathrm{TeV}$ and Limits on Anomalous WW γ and WWZ couplings", Eur. Phys. J. C, vol. 73, 2013, pp. 2610.
[13] S. Chatrchyan, et al., CMS Collaboration, "Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at $\mathrm{V}_{\mathrm{s}}=7$ TeV and limits on anomalous triple gauge boson couplings", Phys. Rev. D, vol. 89, 2014, pp. 092005.
[14] FCC Collaboration, Future Circular Collider Study Kickoff Meeting, 2014.
[15] J. L. Abelleira Fernandez, et al., LHeC Study Group Collaboration, "A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector", J. Phys. G, vol. 39, 2012, pp. 075001.
[16] K. Hagiwara, et al., "Probing the Weak Boson Sector in e+ e--> W+ W", Nucl. Phys. B, vol. 282, 1987, pp. 253.
[17] E. N. Argyres, et al. "One loop corrections to three vector boson vertices in the Standard Model", Nucl. Phys. B, vol. 391, 1993, pp. 23.
[18] P. Kalyniak, et al. "Extracting W boson couplings from the e+ eproduction of four leptons ", Phys. Rev. D, vol. 48, 1993, pp. 5081-5092.
[19] G. Couture, et al. "Anomalous Magnetic and Quadrupole Moments of the W Boson in the Two Higgs Doublet Model", Phys. Rev. D, vol. 36, 1987, pp. 859.
[20] A. Belyaev, et al., "CalcHEP 3.4 for collider physics within and beyond the Standard Model", Comput. Phys. Commun., vol. 184, 2013, pp. 1729-1769.
[21] J. Pumplin, et al., "New generation of parton distributions with uncertainties from global QCD analysis", JHEP, vol. 0207, 2002, pp. 012.

