
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1266

 

 

 
Abstract—An algorithm is a well-defined procedure that takes 

some input in the form of some values, processes them and gives the 
desired output. It forms the basis of many other algorithms such as 
searching, pattern matching, digital filters etc., and other applications 
have been found in database systems, data statistics and processing, 
data communications and pattern matching. This paper introduces 
algorithmic “Enhanced Bidirectional Selection” sort which is 
bidirectional, stable. It is said to be bidirectional as it selects two 
values smallest from the front and largest from the rear and assigns 
them to their appropriate locations thus reducing the number of 
passes by half the total number of elements as compared to selection 
sort. 

 
Keywords—Bubble sort, cocktail sort, selection sort, heap sort. 

I. INTRODUCTION 

N algorithm plays a vital and key role in solving the 
computational problems, it is a well defined 

computational procedure that takes input and produces output 
[9]. It is said to a tool or a sequence of well defined steps to 
solve the computational problems [3]. Sorting is an important 
data structure which finds its place in many real life 
applications. It has various applications in computer systems, 
memory management, and file management. There are various 
sorting algorithms that are in existence till date and ample of 
research is still going on to reduce their time complexity up to 
the extent possible. Research is also going on for finding the 
algorithms which are fast enough than the existing ones. 

Sort is a significant operation in computer programming. If 
the data are sorted according to some criteria of order, the 
efficiency of data handling can be substantially increased. The 
sorted data is beneficial for record searching, insertion and 
deletion thus enhancing the efficiency of these operations.  

In mathematics, computing, linguistics, and related 
disciplines, an algorithm is a finite list of well-defined 
instructions for accomplishing some task that, given an initial 
state, will proceed through a well-defined series of successive 
states, possibly eventually terminating in an end-state [8]. Sort 
algorithm is one of the elementary techniques in computer 
science because of the following reasons. First, it is the origin 
of many other algorithms such as searching, pattern matching, 
digital filters etc., and various other applications have been 
found in database systems, data statistics and processing, data 
communications and pattern matching. Different environment 
requires different sorting methods.  

The formal definition of the sorting problem is as follows: 
Input: A sequence having n numbers in any random order (a1, 
a2, a3… an) 

 
Jyoti Dua is with the United Institute of Technology, Allahabad, India (e-

mail: jyotidua_ecimt@yahoo.com).  

Output: A permutation (a’1, a’2, a’3… a’n) of the input 
sequence such that a’1 ≤ a’2 ≤ a’3 ≤ ….. a’n 

For instance, if the given input of numbers is (59, 41, 31, 
41, 26, 58), then the output sequence is returned by a sorting 
algorithm will be (26, 31, 41, 41, 58, 59) [3]. 

The common sorting algorithms can be divided into two 
classes by the complexity of their algorithms-O(n2) which 
includes bubble sort, insertion sort, selection sort [6] etc., and 
O(n log n) which include heap sort [2], quick sort [7], merge 
sort. Algorithmic complexity is generally written in terms of 
Big-O notation, where the ’O’ represents the complexity of the 
algorithm and a value n represents the size of the set the 
algorithm is run against [5], [10]. 

Two categories of sort algorithms were classified according 
to the records, whether stored in the main memory or auxiliary 
memory. One category is the internal sort which stores the 
records in the main memory. Another is the external sort 
which stores the records in the hard disk because of the 
records' large space occupation [1], [8]. 

II. PROBLEM STATEMENT 

The Sorting problem is to arrange a sequence of records so 
that the values of their key fields form a non decreasing 
sequence. That is, given records r1,r2,r3….,rn with key values 
k1,k2,k3,…,kn respectively, we must produce the same record 
in an order r1’,r2’,r3’…,rn’ such that k1’≤ k2’≤k3,’…,kn’. 

III. METHODOLOGY 

The three criteria of sorting techniques are: 
Stability: Stable sort keeps records with the same key in the 

same qualified order that they were in before the sort. 
Time: The time related to the swaps and comparisons of 

elements in the algorithm. 
Space: The space may be dependent or independent of the 

input sequence size. If the additional space needed in the 
algorithm is independent to the input, its space complexity is 
O (1), otherwise O (n).  

IV. RELATED WORK 

Enhanced Bidirectional Selection sort is an improvement 
and enhancement over Selection sort in terms of stability and 
efficiency. Enhanced Bidirectional Selection sort sort the 
elements bidirectional by finding the minimum value from left 
and maximum from right. At first pass the first minimum 
value is copied to 1st position and maximum value is copied to 
nth position of another array say B. Both minimum and 
maximum value is deleted from the original array say A thus 
reducing the comparison by the factor of 2. 

In second pass second minimum value is copied to 2nd 
position and second maximum element is copied to the (n-1)th 

Jyoti Dua 

Enhanced Bidirectional Selection Sort 

A



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1267

 

 

position of array B. Again both values are deleted from array 
A. This is repeated until all the elements get copied. This 
bidirectional property makes the algorithm stable. In this 
algorithm only comparison takes place and requires no 
swapping. 

A. Algorithm 
EnhSel(A,B,max,min,loc,loc1,N) 

// A and B are array, max is maximum value, min is minimum 
value 

// loc is location of minimum value, loc1 is location of 
maximum value, N is the number of elements 

1. front←1 
2. rear←N 
3. while front<rear 
4.             loc←1, loc1←N 
5.              min←A[1] and max←A[N] 
6.              for i←2 to N 
7.                    if A[i]<min 
8.                        min=A[1] 
9.                        loc←i 
10.                B[front] ←min 
11.                front←front+1 
12.               for i←loc to N 
13.                      A[i] ←A[i+1] 
14.             N=N-1 
15.             for i←N-1 to 1 
16.                   if A[i]>max 
17.                        max←A[i] 
18.                         loc←i 
19.              B[rear] ←max 
20.              rear←rear-1 
21.             for i←loc1 to N 
22.                   A[i] ←A[i+1] 
23.              N=N-1 
24.  B[front]←A[1] 

B. Example 

Apply Enhanced Bidirectional Selection sort on 10 unsorted 
elements. 

Array ‘A’= 66 17 31 22 56 29 33 13 9 11 
Min= A[1] and Max= A[10]  
Pass I: front=1 and rear=10 
Min=9 Copy Min at positions front=1; increment 

front=front+1; delete Min from array ‘A’ 
Max=66 Copy Max at position rear=n; decrement rear=rear-

1; delete Max from array ‘A’. 
Array ‘B’ contains: 

 
TABLE I 

ARRAY ‘B’ AFTER PASS I 
Index Elements 

1 9 
2  
3  
4  
5  
6  
7  
8  
9  
10 66 

 

Original array ‘A’ remains with following elements: 

TABLE II 
ORIGINAL ARRAY ‘A’ AFTER PASS I 

Index Elements 
1 17 
2 31 
3 22 
4 56 
5 29 
6 33 
7 13 
8 11 

 

Pass II: front=2 and rear=9 
Min=11 Copy Min at positions front=2; increment 

front=front+1; delete Min from array ‘A’ 
Max=56 Copy Max at positions rear=9; decrement 

rear=rear-1; delete Max from array ‘A’ 
Array ‘B’ contains: 

 
TABLE III 

ARRAY ‘B’ AFTER PASS II 

Index Elements 
1 9 
2 11 
3  
4  
5  
6  
7  
8  
9 56 
10 66 

 

Original array ‘A’ remains with following elements: 
 

TABLE IV 
ORIGINAL ARRAY ‘A’ AFTER PASS II 

Index Elements 
1 17 
2 31 
3 22 
4 29 
5 33 
6 13 

 

Pass III: front=3 and rear=8 
Min=13 Copy Min at positions front=2; increment 

front=front+1; delete Min from array ‘A’ 
Max=33 Copy Max at positions rear=9; decrement 

rear=rear-1; delete Max from array ‘A’ 
Array ‘B’ contains: 

 
TABLE V 

ARRAY ‘B’ AFTER PASS III 

Index Elements 
1 9 
2 11 
3 13 
4  
5  
6  
7  
8 33 
9 56 
10 66 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1268

 

 

Original array ‘A’ remains with the following elements:  
 

TABLE VI 
ORIGINAL ARRAY ‘A’ AFTER PASS III 

Index Elements 
1 17 
2 31 
3 22 
4 29 

 
Pass IV: front=4 and rear=7 
Min=17 Copy Min at positions front=2; increment 

front=front+1; delete Min from array ‘A’ 
Max=31 Copy Max at positions rear=9; decrement 

rear=rear-1; delete Max from array ‘A’ 
Array ‘B’ contains: 

 
TABLE VII 

ARRAY ‘B’ AFTER PASS IV 

Index Elements 
1 9 
2 11 
3 13 
4 17 
5  
6  
7 31 
8 33 
9 56 
10 66 

 
Original array ‘A’ remains with the following elements: 

 
TABLE VIII 

ORIGINAL ARRAY ‘A’ AFTER PASS IV 

Index  Elements 
1 17 
2 31 

 
Pass V: front=5 and rear=6 
Min=22 Copy Min at positions front=2; increment 

front=front+1; delete Min from array ‘A’ 
Since front=rear. The one element left with an array ‘A’ 

gets copied to the front position in Array ‘B’ 
Therefore, the final result is stored in Array ‘B’: 

 
TABLE IX 

FINAL ARRAY ‘B’ 

Index Elements 
1 9 
2 11 
3 13 
4 17 
5 22 
6 29 
7 31 
8 33 
9 56 
10 66 

C. Performance Analysis 

For Analysis of Enhanced Bidirectional Selection sort, let 
time complexity be T (n). Therefore, the time taken by while 
loop in line 3 of the algorithm is n/2.The time taken to find 

minimum and maximum element is 2n-2. The time to delete 
minimum and maximum element is 2n. 

Hence, T(n)=n/2*(2n-2+2n)=O(n2) 
 

TABLE X 
SORTING COMPLEXITY 

Sort Best Case Average 
Case 

Worst 
Case 

Space  Stable 

Selection O(n2) O(n2) O(n2) O(1) No 
Heap O(nlogn) O(nlogn) O(nlogn) O(n) No 
Enhanced 
Selection 

O(n2) O(n2) O(n2) O(n) Yes 

 
As compared to selection sort Enhanced Bidirectional 

Selection sort avoids swapping and involves comparisons and 
assigns the element its correct position in another array. 

The total number of comparisons required for finding the 
minimum element in Selection sort = the total number of 
comparisons required for finding minimum and maximum 
value in the Enhanced Bidirectional Selection sort. 

While the outer while loop in line number 3 of Enhanced 
Bidirectional Selection sort algorithm reduces the number of 
passes by N/2 where N is the number of elements. 

For sorting N=10 unsorted elements using Enhanced 
Bidirectional Selection sort the iteration will be as follows: 

 
TABLE XI 

ITERATION FOR FINDING MINIMUM AND MAXIMUM VALUES 

Front Rear Comparison for finding Min 
value 

Comparison for finding 
Maximum value 

1 10 (10-1) (9-1) 
2 9 (8-1) (7-1) 
3 8 (6-1) (5-1) 
4 7 (4-1) (3-1) 
5 6 (2-1) - 

 

Using Table II data we get number of comparison as:    
 
{(10-1) + (8-1) + (6-1) + (4-1) + (2-1)} + {(9-1) + (7-1) + (5-1) + (3-1)} = 45 

 
TABLE XII 

NUMBER OF COMPARISON AND PASSES IN SELECTION SORT 

No. of Element Comparison No. of Pass 
N=10 45 9 
N=50 1225 49 
N=100 4950 99 
N=500 124750 499 
N=1000 499500 999 

 
TABLE XIII 

NUMBER OF COMPARISON AND PASSES IN ENHANCED BIDIRECTIONAL 

SELECTION SORT 

No. of Element Comparison No. of Pass 
N=10 45 5 
N=50 1225 25 
N=100 4950 50 
N=500 124750 250 
N=1000 499500 500 

V. CONCLUSION 

 Every Sorting problem has its pros and cons. The cocktail 
[8] is a bidirectional bubble sort which reduces the number of 
passes as compared to bubble sort [4]. Similarly, Enhanced 
Bidirectional Selection sort reduces the number of passes and 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1269

 

 

is stable as compared to selection sort. There is no swapping 
between the two elements, but uses assignment operation to 
place the element in its right position so it takes memory O (n) 
compared to selection sort. Enhanced Bidirectional Selection 
sort takes extra space, but this issue is in less consideration.  

REFERENCES  
[1] D. Knuth, “The Art of Computer Programming (Sorting and 

Searching),” 3rd ed. vol. 3, Addison-Wesley, 1997, ISBN 0-201-89685-
0. pp. 138–14, 1997.  

[2] J.W.J Williams, Algorithm 232: Heap sort. Comm. ACM 7, 6 June 1964, 
pp.347-348.  

[3] Thomas H. Coreman, Charles E. Leiserson and Ronald L. Rivest, 
Introduction to Algorithms. McGraw-Hill, New York. 

[4] Aho, A.V.,Hopcroft,J.E. Ullman,J.D.,”Algorithms and Data Structure”, 
Pearson India, Reprint 2000. 

[5] Z. Iqbal, H. Gull and A.W. Muzaffar “A New Friends Sort Algorithm”, 
2nd IEEE Int. Conf. Software Engineering and Information Technology, 
ISBN 978-1-4244-4520-2, pp 326-329,2009. 

[6] Seymour Lipschutz. Schaum’s “Selection Sort (Outline Series Theory 
and Problems of Data Structures)”, Int. ed. McGraw-Hill, 1986. ISBN 0-
07-099130-8, pp. 324–325, ch. 9. 

[7]  Nidhi Chhajed, Simarjeet Singh Bhatia,”A Comparison based Analysis 
of different types of Sorting Algorithm with their performance”,Indian 
Journal of Research PARIPEX,Vol 2,Issue 3,March 2013. 

[8] D.T.V Dharmajee Rao, B.Ramesh, ”Experimental Based Selection of 
Best Sorting”, International Journal of Modern Engineering Research 
(IJMER),vol. 2, no. 4, July-Aug 2012 ISSN 2249-6645 pp-2908-2912. 

[9] Eshan Kapur, Parveen Kumar and Sahil Gupta,” Proposal of a Two Way 
Sorting Algorithm and Performance Comparison with Existing 
Algorithms”, International Journal of Computer Science, Engineering 
and Applications (IJCSEA) vol.2, no.3, June 2012. 

[10] Jehad Alnihoud and Rami Mansi, “An Enhancement of Major Sorting 
Algorithms”, The International Arab Journal of Information Technology, 
Vol. 7, no. 1, January 2010. 

 
 
 
Jyoti Dua completed her MCA from Ewing Christian Institute of 
Management and Technology and perusing her M.Tech from United Institute 
of Technology Allahabad, India. Her areas of interests are Algorithms, Data 
Mining, and Computer Networks. 
 
 
 
 
 
 
 

 


