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Fekete-Szegö Problem for Subclasses of Analytic
Functions Defined by New Integral Operator

Khalifa AlShaqsi

Abstract—The author introduced the integral operator , by using this
operator a new subclasses of analytic functions are introduced. For
these classes, several Fekete-Szeg¨ type coefficient inequalities are
obtained.

Keywords—Integral operator, Fekete-Szeg¨ inequalities, Analytic
functions.

I. INTRODUCTION AND DEFINITION

LET A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anz
n, (1)

which are analytic in the open unite disk U = {z : z ∈
C and |z| < 1}.
Also let S denote the subclasses of A consisting of functions
which are univalent in U.
In [2] Fekete and Szeg¨ proved a noticeable result that the
estimate

|a3 − μa22| ≤ 1 + 2exp
( −2μ

1− μ

)

holds for f ∈ S and for 0 ≤ μ ≤ 1. This inequality is sharp
for each μ. The coefficient functional

φμ(f) = a3 − μa22 =
1

6

(
f ′′′(0)− 3μ

2
(f ′′(0))2

)

on f ∈ A represents various geometric quantities as well as
in the sense that this behaves well with respect to the rotation,
namely

φμ(e
−iθf(eiθz) = e2iθφμ(f), (θ ∈ R).

In fact, other than the simplest case when

φ0(f) = a3,

we have several important ones. For example,

φ1(f) = a3 − a22,
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represent Sf (0)/6, where Sf denotes the Schwarzian
derivative

Sf (z) =
(f ′′(z)
f ′(z)

)′
− 1

2

(f ′′(z)
f ′(z)

)2

.

Moreover, the first two non-trivial coefficients of the n-th root
transform

(f(zn))
1
n == z + cn+1z

n+1 + c2n+1z
2n+1 + ...

of f with the power series (1), are written by

cn+1 =
a2
n

and

c2n+1 =
a3
n

+
(n− 1)a22

2n2

so that

a3 − μ2
2 = n(c2n+1 − λc2n+1),

where

λ = μn+
n− 1

2

Thus, it is quite natural to ask about inequalities for φμ

corresponding to subclasses of S . This is called Fekete-Szeg¨
problem. Actually many authors have considered this problem
for typical classes of univalent functions.

Recently, in [1] the author introduced a certain integral
operator I − cδ defined by :

Iδ
c f(z) =

(1 + c)δ

Γ(δ)

∫ 1

0

tc−1(log 1/t)δ−1f(tz)dt, (2)

where c > 0, δ > 1 and z ∈ U.

We also note that the operator Iδ
c f(z) defined by (1) can be

expressed by the series expansion as following:Po.Box:75 P.C:612, (e-mail: khalifa.alshaqsi@nct.edu.om).
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Iδ
c f(z) = z +

∞∑
k=2

(
1 + c

k + c

)δ

akz
k, (3)

Obviously, we have, for (δ, λ ≥ 0)

Iδ
c (I

λ
c f(z)) = Iδ+λ

c f(z). (4)

and

Iδ
c (zf

′(z)) = z(Iδc f(z))
′. (5)

Moreover, from (3), it follows that

z(Iδ+1
c f(z))′ = (c+ 1)Iδ

c f(z)− cIδ+1
c f(z) (6)

We note that :

• For c = 0 and δ = n(n is any integer), the multiplier
transformation In

0 f(z) = Inf(z) was studied by Flett
[3] and Salagean [4];

• For c = 0 and δ = −n(n ∈ N0 = {0, 1, 2, 3...}), the
differential operator I−n

0 f(z) = Dnf(z) was studied by
Salagean [4];

• For c = 1 and δ = n(n is any integer), the operator
In
1 f(z) = Inf(z) was studied by Uralegaddi and

Somanatha [5];
• For c = 1 , the multiplier transformation Iδ

1f(z) =
Iδf(z) was studied by Jung et al. [6];

• For c = a−1 (a > 0) , the integral operator Iδ
a−1f(z) =

Iδ
a−1f(z) was studied by Komatu [7];

Using the operator Iδ
c , we now introduce the following

classes:

Definition 1: we say that a function f ∈ A is in the class
Sc,δ(b) if

�
{
1 +

1

b

(z(Iδ
c f(z))

′

Iδ
c f(z)

− 1
)}

> 0,

(c > 0, δ ≥ 0, b ∈ C\{0}, z ∈ U). (7)

Definition 2: we say that a function f ∈ A is in the class
Cc,δ(b) if

�
{
1 +

1

b

z(Iδ
c f(z))

′′

Iδ
c f(z)

}
> 0,

(c > 0, δ ≥ 0, b ∈ C\{0}, z ∈ U). (8)

Note that

f ∈ Cc,δ(b) ⇔ zf ′ ∈ Sc,δ(b). (9)

In particular, we have starlike and convex function classes,
Sc,0(1) = S∗ and Cc,0(1) = C, respectively.

We denote by P a class of the analytic functions in U

with

p(0) = 1 and �{p(z)} > 0.

To prove our results, we need the following Lemmas
considered by Duren [8] Ravichandran et al. [9] .

Lemma 1: [8] Let p ∈ P with p(z) = 1 + c1z + c2z
2 + ... .

Then

|cn| ≤ 2, (n ≥ 1).

Lemma 2: [9] Let p ∈ P with p(z) = 1 + c1z + c2z
2 + ... .

Then for any complex number γ

|c2 − γc21| ≤ 2max{1, |2γ − 1|},

and the result is sharp for the functions given by

p(z) =
1 + z2

1− z2
, p(z) =

1 + z

1− z
.

Lemma 3: [8] Let p ∈ P with p(z) = 1 + c1z + c2z
2 + ... .

Then

∣∣∣∣c2 − 1

2
λc21

∣∣∣∣ ≤ 2 +
1

2
(|λ− 1| − 1)|c1|2.

II. MAIN RESULTS

Theorem 1: Let c, δ ≥ 0; b ∈ C\{0}. If f ∈ Sc,δ(b), then

|a2| ≤ 2|b|
(c+ 2

c+ 1

)δ

,

|a3| ≤ |b|
(c+ 3

c+ 1

)δ

max{1, |1 + 2b|},

and

∣∣∣∣a3 − 1

2

( (c+ 1)(c+ 3)

(c+ 2)2

)δ

a22

∣∣∣∣ ≤ |b|
(c+ 3

c+ 1

)δ

.

Proof. Denote

Iδ
c = z +A2z

2 +A3z3 + ... .



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:12, 2014

1467

Then by (3), we can write

A2 =
(c+ 1

c+ 2

)δ

a2, A3 =
(c+ 1

c+ 3

)δ

a3. (10)

by the definition of the class Sc,δ(b), there exists p ∈ P such
that:

1 +
1

b

(z(Iδ
c f(z))

′

Iδ
c f(z)

− 1
)
= p(z),

z(Iδ
c f(z))

′

Iδ
c f(z)

= 1− b+ bp(z),

so that

z(1 + 2A2z + 3A3z
2 + ...)

z +A2z2 +A3z3 + ...
= 1− b+ b(1 + c1z + c2z

2 + ...),

which implies the equality

z + 2A2z
2 + 3A3z

3 + ...

= z + (A2 + bc1)z
2 + (A3 + bc1A2 + bc2)z

3 + ... .

Equating the coefficients of both side, we have

A2 = bc1, A3 =
b

2
(c2 + bc21), (11)

so that, on account of (10)

a2 = b
(c+ 2

c+ 1

)δ

c1, a3 =
b

2

(c+ 3

c+ 1

)δ

(c2 + bc21). (12)

Taking into account (12) and Lemma 1, we obtain

|a2| ≤ 2|b|
(c+ 2

c+ 1

)δ

,

and Lemma 2

|a3| =

∣∣∣∣ b2
(c+ 3

c+ 1

)δ

(c2 + bc21)

∣∣∣∣
≤ |b|

(c+ 3

c+ 1

)δ

max{1, |1 + 2b|}.

Moreover, by Lemma 1

∣∣∣∣a3 − 1

2

( (c+ 1)(c+ 3)

(c+ 2)2

)δ
a22

∣∣∣∣
=

∣∣∣∣ b2
( c+ 3

c+ 1

)δ
(c2 + bc21)−

b2c21
2

( (c+ 1)(c+ 3)

(c+ 2)2

)δ( c+ 2

c+ 1

)2δ
∣∣∣∣

=

∣∣∣∣ bc22
( c+ 3

c+ 1

)δ
∣∣∣∣

≤ |b|
( c+ 3

c+ 1

)δ
.

as asserted.

Now, we consider functional |a3−μa22| for complex μ.

Theorem 2: Let c, δ ≥ 0; b ∈ C\{0}. If f ∈ Sc,δ(b), then for
μ ∈ C, we have
∣∣∣a3 − μa

2
2

∣∣∣ ≤ |b|
( c + 3

c + 1

)δ
max

{
1,

∣∣∣∣∣1 + 2b − 4μb
( (c + 2)2)

(c + 1)(c + 3)

)δ

∣∣∣∣∣
}

.

Moreover for each μ, there is a function in Sc,δ(b) such that
equality holds.

Proof. Taking into account (12) we have

a3 − μa22 =
b

2

(c+ 2

c+ 1

)δ

(c2 + bc21)− μb2c21

(c+ 2

c+ 1

)2δ

=
b

2

(c+ 2

c+ 1

)δ

(c2 + βc21), (13)

where

β = −b+ 2μb
( (c+ 2)2)

(c+ 1)(c+ 3)

)δ

.

Then, with the aid of Lemma 2, we obtain

∣∣a3 − μa22
∣∣ (14)

≤ |b|
( c+ 3

c+ 1

)δ
max

{
1,

∣∣∣∣1 + 2b− 4μb
( (c+ 2)2)

(c+ 1)(c+ 3)

)δ
∣∣∣∣
}
.

as asserted. An examination of the proof shows that equality
is attained for the first case when c1 = 0 and c2 = 2 and the
corresponding f ∈ Sc,δ(b) is given by

z(Iδ
c f(z))

′

Iδ
c f(z)

=
1 + (2b− 1)z2

1− z2
, (15)

and likewise for the second case when c1 = c2 = 2 the
corresponding f ∈ Sc,δ(b) is given by

z(Iδ
c f(z))

′

Iδ
c f(z)

=
1 + (2b− 1)z

1− z
, (16)

respectively.
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Taking δ = 0 and b = 1 in Theorem 2, we have :

Corollary 1: [10] If f ∈ S∗, then for μ ∈ C we have

∣∣a3 − μa22
∣∣ ≤ max{1, |4μ− 3|}.

Moreover for each μ, there is a function in S∗ such that
equality holds.

We next consider the case when μ and b are real. Then we
have

Theorem 3: Let c, δ ≥ 0; b > 0. If f ∈ Sc,δ(b), then for
μ ∈ R, we have

∣∣a3 − μa22
∣∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b( c+3
c+1 )

δ

[
1 + 2b− 4μb

(
(c+2)2

(c+1)(c+3)

)δ
]

if μ ≤ 1
2

(
(c+1)(c+3)

(c+2)2

)δ

b
(

c+3
c+1

)δ

if 1
2

(
(c+1)(c+3)

(c+2)2

)δ

≤ μ ≤ 1+b
2b

(
(c+1)(c+3)

(c+2)2

)δ

b( c+3
c+1 )

δ

[
−1− 2b+ 4μb

(
(c+2)2

(c+1)(c+3)

)δ
]

if μ ≥ 1+b
2b

(
(c+1)(c+3)

(c+2)2

)δ

Moreover for each μ, there is a function in Sc,δ(b) such that
equality holds.

Proof. By (14), we obtain

a3 − μa22 =
b

2

(c+ 3

c+ 1
)δ (17)[

c2 − c21
2

+
c21
2

(
1 + 2b− 4μb

( (c+ 2)2

(c+ 1)(c+ 3)

))δ
]
.

First, let μ ≤ 1
2

(
(c+1)(c+3)

(c+2)2

)δ

. in this case, by (17), Lemma
1 and Lemma 3 give

∣∣a3 − μa22
∣∣ ≤ b

2

(c+ 3

c+ 1
)δ[

2− |c1|2
2

+
|c1|2
2

(
1 + 2b− 4μb

( (c+ 2)2

(c+ 1)(c+ 3)

))δ
]

≤ b(
c+ 3

c+ 1
)δ
[
1 + 2b− 4μb

( (c+ 2)2

(c+ 1)(c+ 3)

)δ
]
.

Now let 1
2

(
(c+1)(c+3)

(c+2)2

)δ

≤ μ ≤ 1+b
2b

(
(c+1)(c+3)

(c+2)2

)δ

. Then,
using the above calculations, we get

∣∣a3 − μa22
∣∣ ≤ b

(c+ 3

c+ 1

)δ

.

Finally, if μ ≥ 1+b
2b

(
(c+1)(c+3)

(c+2)2

)δ

, then we obtain

∣∣a3 − μa22
∣∣ ≤ b

2

(c+ 3

c+ 1
)δ[

2− |c1|2
2

+
|c1|2
2

(
− 1− 2b+ 4μb

( (c+ 2)2

(c+ 1)(c+ 3)

))δ
]

≤ b

2

(c+ 3

c+ 1
)δ[

2 +
|c1|2
2

(
− 2− 2b+ 4μb

( (c+ 2)2

(c+ 1)(c+ 3)

))δ
]

≤ b(
c+ 3

c+ 1
)δ
[
−1− 2b+ 4μb

( (c+ 2)2

(c+ 1)(c+ 3)

)δ
]
.

Equality is attained for the second case on
choosing c1 = 0, c2 = 2 in (15) and in (16)
c1 = c2 = 2; c1 = 2i, c2 = −2 for the firs and third
case, respectively. Thus the proof is complete.

Using the relation (9), we easily obtain bounds of coefficients
and a solution of the Fekete-Szegö problem in Cc,δ .

Theorem 4: Let c, δ ≥ 0; b ∈ C\{0}. If f ∈ Cc,δ(b), then

|a2| ≤ |b|
(c+ 2

c+ 1

)δ

,

|a3| ≤ |b|
3

(c+ 3

c+ 1

)δ

max{1, |1 + 2b|},

and

∣∣∣∣a3 − 2

3

( (c+ 1)(c+ 3)

(c+ 2)2

)δ

a22

∣∣∣∣ ≤ |b|
3

(c+ 3

c+ 1

)δ

.

Reasoning in the same line as in proof of Theorem 2 obtain
:

Theorem 5: Let c, δ ≥ 0; b ∈ C\{0}. If f ∈ Cc,δ(b), then for
μ ∈ C, we have

∣∣a3 − μa22
∣∣ ≤ |b|

3

(c+ 3

c+ 1

)δ

max

{
1,

∣∣∣∣1 + 2b− 3μb
( (c+ 2)2)

(c+ 1)(c+ 3)

)δ
∣∣∣∣
}
.

Moreover for each μ, there is a function in Cc,δ(b) such that
equality holds.

By taking δ = 0 and b = 1 in Theorem 5, we have

Corollary 2: [10] If f ∈ C∗, then for μ ∈ C we have

∣∣a3 − μa22
∣∣ ≤ max{1

3
, |μ− 1|}.

Moreover for each μ, there is a function in C∗ such that
equality holds.
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