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Abstract—Many problems in science and engineering field require
the solution of shifted linear systems with multiple right hand
sides and multiple shifts. To solve such systems efficiently, the
implicitly restarted global GMRES algorithm is extended in this
paper. However, the shift invariant property could no longer hold over
the augmented global Krylov subspace due to adding the harmonic
Ritz matrices. To remedy this situation, we enforce the collinearity
condition on the shifted system and propose shift implicitly restarted
global GMRES. The new method not only improves the convergence
but also has a potential to simultaneously compute approximate
solution for the shifted systems using only as many matrix vector
multiplications as the solution of the seed system requires. In
addition, some numerical experiments also confirm the effectiveness
of our method.
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I. INTRODUCTION

WE consider the solution of a sequence of families of
linear systems:

(A− σiI)x
j
i = bj , (1)

with j = 1, . . . , p and i = 1, . . . , s. Here A ∈ Cn×n

is a nonsingular matrix and all the bj ∈ Cn are available
simultaneously. Then (1) can be written as

(A− σiI)Xi = B, (2)

where B = [b1, b2, . . . , bp] and Xi = [x1
i , x

2
i , . . . , x

p
i ] are N×

p rectangular matrices. We call the numbers {σi}
s
i=1 ∈ C

shifts.
Systems with multiple right hand sides and multiple

shifts arise in many scientific and engineering applications.
For example, control theory [4], time dependent differential
equations [16] and lattice quantum chromodynamics (lattice
QCD) [1].
For simplicity of discussion, we frequently will focus on

one family of linear systems with only one shift and drop the
index i, yielding two systems of the form

AX = B, (3)

(A− σI)Xσ = B, (4)
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The first equation is referred as the seed systems while the
second one is termed as the shifted systems. All of them are
the systems with multiple right hand sides.

A number of recent articles have established the benefits
of using the shift invariance when solving shift linear systems
with a single right hand (p = 1). Methods that are based on the
nonsymmetric Lanczos process have been straightforwardly
derived (1), such as CG [17], QMR, TFQMR [6], BiCGstab
[7] and a recently proposed method IDR [15]. Restarted
Krylov methods are not as straightforward. After a restart,
all residual vectors formed at the end of a cycle of the Krylov
method need to be parallel to each other. For FOM method,
thid happens automatically [14]. However, this collinearity
does not occur for restarted GMRES [8]. To handle this
situation, Frommer and Glässner enforced the residuals to be
collinear and proposed shifted GMRES [8]. This is an efficient
method for solving families of shifted linear systems (p = 1),
but it inherits the properties of stagnation and unpredictable
convergence exhibited by restarted GMRES, see, e.g. [13], [5].
Deflated version of restarted GMRES can improve this. One
of these approaches is related to Morgan’s GMRESDR [12],
and in [3], this method has been extended to simultaneously
solve a family of shift systems with a single right hand side.

Recently, Lin combine restarted global GMRES method
with deflation technology and proposed the implicitly global
GMRES (GLGMRESIR) approach [11] for solving the seed
systems. It has been observed that significant improvements
in convergence rates can be achieved from global Krylov
subspace methods by adding these harmonic Ritz matrices.
Therefore, we consider an extension of GLGMRESIR to solve
shifted linear systems with multiple right hand sides and
multiple shifts in this section. Thus, we will have an efficient
method which not only improves the convergence but also has
a potential to simultaneously compute approximate solution
for the shifted systems as the expense of only p matrix vector
multiplications per iteration.

The structure of the paper is as follows. In the next section,
we recall some properties of global Krylov subspace. In
Section III , we describe the implicitly global GMRES method
aimed at accelerating convergence. We introduce our new
method to address shifted linear systems in Section IV . The
effectiveness of the proposed method is also demonstrated
in Section V . Finally, some conclusions are summarized in
Section V I .
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II. PRELIMINARIES

A. Notations
Throughout this paper, ||.||F denotes the Frobenius norm, T

is referred to as the transpose conjugate operation of matrix,
the identity matrix of order k is designated as Ik or I and
0i×j is defined as the zero rectangular matrix with i rows and
j columns. R(·) and tol denote the range of the matrix and
the convergence threshold, respectively. For two rectangular
matrices X and Y , we define < X, Y >F= tr(XTY ), where
tr(·) denotes the trace of the square matrix XTY . If X is
an n × p matrix, the x = vec(X) is the ns vector obtained
by stacking the p columns of the matrix X . The notations
of MATLAB style are also used, for example, U(1 : i, 1 : j)
denotes the submatrix of the first i rows and the first j columns
of U , U(:, j) refers to its jth column and U(i, j) corresponds
to the Ui,j entry of the matrix U .

Let X0 ∈ Cn×p be the initial guess and R0 = B − AX0.
Global Krylov subspace generated by A from R0 is defined
as follows

Km(A,R0) := span{R0, AR0, A
2R0, . . . , A

m−1R0}.

Note that the definition of ’global span’ means a linear
combination of the N × p matrices, i.e., {

∑m−1
i=0 γiA

iR0},
for some scalars γ′

is ∈ C. We observe that the global Krylov
subspace generated by A and R0 is invariant under any shift,
i.e.,

Km(A,R0) = Km((A − σI), R0),

as long as the starting rectangular matrices are collinear.
Thus, any Z ∈ Km(A,R0) can be expressed as Z =

Φm−1(A)R0 with Φm−1 a polynomial of degree ≤ m − 1
or, equivalently, Z = Φσ

m−1(A− σI)R0, where

Φσ
m−1(t) = Φm−1(t+ σ).

Similar to the Krylov subspace, some properties of the
global Krylov space were introduced in [10].

III. IMPLICITLY GLOBAL GMRES METHOD

A. Global Arnoldi Process

We firstly review global Arnoldi Process that constructs
an Frobenius orthonormal (Forthonormal) basis of the global
Krylov subspace Km(A,R0), as described in [10].
The global Arnoldi algorithm constructs an Forthonormal

basis V1, V2, . . . Vm satisfying

tr(V T
i Vj) = 0, for i �= j, i, j = 1, 2, . . . ,m,

tr(V T
i Vi) = 1, for i = 1, 2, . . . ,m.

(5)

Then we have a global Arnoldi relation

AVm = Vm+1(Hm ⊗ Ip) + hm+1,m[0n×p, . . . , 0n×p, Vm+1],

AVm = Vm+1(H̄m ⊗ Ip), (6)

Algorithm 1 Global Arnoldi Process [10]
β = ||V ||F , V1 = V/β;
for j = 1, . . . ,m, do
U = AVj ;
for i = 1, 2, . . . j, do
hi,j =< U, Vi >F ;
U = U − Vihi,j ;

end for
Hj+1,j = ||U ||F
Vj+1 = U/hj+1,j ;

end for

where Vm+1 denotes the n × (m + 1)p rectangular matrix:
Vm+1 = [V1, V2, . . . Vm+1], H̄m denote the (m+1)×m upper
Hessenberg matrix:

H̄m =

⎡
⎢⎢⎢⎢⎢⎣

h1,1 h1,2 . . . h1,m

h2,1 h2,2 . . . h2,m

0 h3,2 . . . h3,m

...
...

. . .
...

0 0 . . . hm+1,m

⎤
⎥⎥⎥⎥⎥⎦

=

[
Hm

hm+1,meHm

]
∈ C

(m+1)×m,

with em = [0, . . . , 0, 1]T is the mth vector of the canonical
basis of Rm.
Since hi,j =< U, Vi >F= tr(V T

i U) = vec(Vi)
T vec(U),

hj+1,j = ||U ||F = ||vec(U)||2, the global Arnoldi process
over the matrix A with starting rectangle matrix V is
equivalent with the classical Arnoldi process over the matrix
(Ip ⊗ A) with starting vector vec(V ). Then we have the
following relation:

(Ip ⊗A)[vec(V1), vec(V2), . . . , vec(Vm)]

= [vec(V1), vec(V2), . . . , vec(Vm)]Hm

+ hm+1,mvec(Vm+1)e
T
m,

= [vec(V1), vec(V2), . . . , vec(Vm), vec(Vm+1)]H̄m.

(7)

Let us assume that a global Arnoldi relation of type AVm =
Vm+1(H̄m⊗Is) holds. In the GLGMRESIR method, harmonic
Ritz matrices corresponding to the small eigenvalues θ′is are
kept in the restarting scheme. We denote these harmonic
Ritz matrices Yk = Vm(gk ⊗ Ip), where the k vectors gi’s
corresponding to the smallest eigenvalues are obtained as
solutions of the following generalized eigenvalue problem

< AVm, AVm(gi ⊗ Ip)− Vm(θigi ⊗ Ip) >F= 0. (8)

Using (6), this becomes

(Hm + h2
m+1,mH−T

m eme−T
m )gi = θigi, 1 ≤ i ≤ k. (9)

Let R0 be the initial residual for the linear equations at the
start of the new cycle. Together with harmonic Ritz matrices,
these matrices ([Y1, . . . , Yk, R0]) are used to construct a new

B. Global Krylov Subspace

B. Implicitly Restarted Global GMRES
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Forthogonal basis of dimension k+1. It allows us to compute
new matrices Vnew

k+1 and Hnew
k such that

AVnew
k = Vnew

k+1 (H
new
k ⊗ Ip),

< Vnew
k ,Vnew

k >F = Ik+1,

where Vnew
k is the Forthogonal basis of [Y1, . . . , Yk, R0] and

Hnew
k is a (k + 1)× k rectangular matrix. Then we run m−

k−1 steps of the global Arnoldi process with starting matrices
Vnew
k+1 (:, kp+1 : (k+1)p) to eventually build Vm+1 and H̄m.
At the end of each cycle of GLGMRESDR, a global Arnldi
relation is generated,

AVm = Vm+1(H̄m ⊗ Is),

< Vm+1,Vm+1 >F = Im+1,

where Vi = Vnew
k+1 (:, (i− 1)p+1 : ip), 1 ≤ i ≤ k+1 and H̄m

now is an upper Hessenberg matrix, except for a full leading
k + 1 by k + 1 portion. Remarkably, Vm is the Forthonormal
basis of a global Krylov subspace of dimension m,

S = span{Y1, Y2, . . . , Yk, R0, AR0, A
2R0, . . . , A

m−k−1R0}.

An approximate solution Xm ∈ Cn×p is then found by
minimizing the residual norm ||R0 −AVmY || over the space
X0 + S. Details of the GLGMRESIR method are given in
Algorithm 2.

Algorithm 2 GLGMRESIR [11]
Input: A ∈ Cn×n nonsingular, B ∈ Cn×p. X0 = 0n×p, tol
Output: Xm ∈ Cn×p with Xm ≈ A−1B.
1: Choose an initial guess matrix X0 and compute the
residual matrix R0 = B − AX0. β0 = ||R0||F , V1 =
R0/β0. Generate Vm+1 and H̄m with the global Arnoldi
process. Set c = [βT , 0, . . . , 0]T .

2: Solve min ||c − H̄my||2 for Ym. Set Xm = X0 +
Vm(ym ⊗ Ip), Rm = B − AXm. Check residual norms
for convergence, and process if not satisfied.

3: Compute the k smallest eigenpairs (θj , gj) of (Hm +
h2
m+1,mH−T

m eme−T
m ).

4: Orthonormalize the vectors g′is by the first separating into
real and imaginary parts if complex, to form the columns
ofGk ∈ Rm×k. (It may be necessary to adjust k to include
both the real and imaginary part of complex eigenvectors.)

5: Extend with zero entries the vectors p1, . . . , pk to length
m+1, then orthonormalize the columns of z = c−H̄mym

against the columns of
[

Gk

0

]
to form gk+1. Set Gk+1 =[

Gk

0 gk+1

]
6: Set Vnew

k+p = Vm+1(Gk+1 ⊗ Ip), Hnew
k = GT

k+1H̄mGk.
Apply the global Arnoldi algorithm to extend Hnew

k and
V new
k+p to H̄m and Vm+1.

7: Let ci =< Vi, Rm >F , i = 1, . . . ,m+ 1 and X0 = Xm.
Go to step 2.

Let V̄m = [vec(V1), vec(V2), . . . , vec(Vm)]. Note that (8) is
equivalent with

(Ip ⊗A)V̄m ⊥ [(Ip ⊗A)V̄mgi − θiV̄mgi]. (10)

The residual vector vec(Rm) is orthogonal to the subspace
spanned by the columns of (Ip ⊗ A)V̄m. From (9), we
observe that harmonic residual vectors vec(R̃j) = (Ip ⊗
A)vec(Yj) − θjvec(Yj) is also is orthogonal to the subspace
R((Ip ⊗ A)V̄m). The harmonic residual vectors and the
residual vector vec(Rm) all reside in the Krylov subspace of
dimension m+ 1 and are orthogonal to the same subspace of
dimension m, so they must be multiples of each other, i.e.,
vec(R̃j) = ζjvec(Rm), j = 1, . . . , k. Then we have

R̃j = AYj − θjYj = ζjRm, j = 1, . . . , k.

IV. GLGMRESIR FOR SHIFTED LINEAR SYSTEMS

As mentioned above, GLGMRESIR generates the matrix
subspace of dimension m, i.e., S. Any vector Xk ∈ X0 + S
can be represented as

Xm = X0 + Pm−k−1(A)R0 +
k∑

i=1

αiYi, (11)

where Pm−k−1 is a polynomial of degree ≤ m− k − 1 with
Pm−k−1(0) = 1. Then, the corresponding residual Rm = B−
AXm satisfies

Rm = R0 −APm−k−1(A)R0 −

k∑
i=1

αiAYi

= Φm−k(A)R0 −

k∑
i=1

αiAYi

where Φm−k(t) = 1− tPm−k−1(t) is a polynomial of degree
≤ m− k with Φm−k(0) = 1.
For the shifted systems, we have

Xσ
m = Xσ

0 + P σ
m−k−1(A− σI)Rσ

0 +

k∑
i=1

ασ
i Yi,

Rσ
m = Rσ

0 − (A− σI)P σ
m−k−1(A− σI)Rσ

0 −

k∑
i=1

ασ
i (A− σI)Yi

= Φσ
m−k(A− σI)Rσ

0 −

k∑
i=1

ασ
i (A− σI)Yi

where Φm−k(t) = 1− tPm−k−1(t) is a polynomial of degree
≤ m− k with Φm−k(0) = 1.

A. Collinear Residuals

Following the similar steps as in [9], we provide a simple
analysis which justifies the residual Rσ

m is unique if the
approximate collinearity condition exist.
Suppose that the initial residuals for the base and shifted

systems are collinear, Rσ
0 = β0R0, β0 ∈ C. We enforce the

condition that the residual Rσ
m is parallel to the minimized

residual Rm, i.e.,

Rσ
m = βmRm, βm ∈ C,
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which amounts to

β0Φ
σ
m−k(A− σI)Rσ

0 −
k∑

i=1

ασ
i (A− σI)Yi

= βsΦm−k(A)R0 −

k∑
i=1

αiAYi.

Combining the conditions AYi − θiYi = R̃i, (A − σI)Yi =
(θi − σ)Yi + R̃i and R̃i = ζiRm yield

β0Φ
σ
m−k(A− σI)R0 −

k∑
i=1

(ασ
i ζi

− βsαiζi)R0 − βsΦm−k(A)R0

=
k∑

i=1

(ασ
i (θi − σ)− βsαiθi)Yi.

Since the vectors Y1, . . . , Yk, R0, AR0, . . . , A
m−k−1R0 are

Forthogonal, it holds that

β0Φ
σ
m−k(t− σ) −

k∑
i=1

(ασ
i ζi − βsαiζi)− βsΦm−k(t) = 0

ασ
i (θi − σ)− βsαiθi = 0, i = 1, . . . , k.

Using the relation Φσ
m−k(0) = 1, we have⎛

⎜⎜⎜⎝
Φm−k(σ)−

∑k

i=1 αiζi ζ1 . . . ζk
α1ζ1 σ − θ1 . . . 0
...

...
. . .

...
αkζk 0 . . . σ − θk

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

βs

ασ
1
...
ασ
k

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

β0

0
...
0

⎞
⎟⎟⎟⎠ .

(12)

Observe that when θj �= σ, i = 1, . . . , k and Φm−k(σ) �=∑k

i=1 αiζiσ/(σ−θi), the above system has a unique solution.
It is shown that the colinearity condition cannot be satisfied,
but if it can, the residual Rσ

m is unique.
In practice, the corresponding polynomials Φm−k are not

calculated. We now work out how the shifted systems can
be practically computed when the GLGMRESIR iteration is
performed on the seed systems.
Our basic assumption is that Rσ

0 = β0R0. As mentioned
above, at the end of each cycle of GLGMRESIR, a global
Arnoldi relation is generated

AVm = Vm+1(H̄m ⊗ Ip),

with a shifted Arnoldi relation

(A− σI)Vm = Vm+1((H̄m − σIm)⊗ Ip),

We enforce the condition that the residual for the shifted
system is parallel to the minimized residual of the base system,
i.e.,

Rσ
m = βmRm. (13)

So
B − (A− σI)(Xσ

0 + Vm(yσm ⊗ Ip)) = βmVm+1(z ⊗ Ip)

β0R
σ
0 − Vm+1((H̄m − σIm)yσm ⊗ Ip) = Vm+1(βmz ⊗ Ip)

Vm+1((β0c− (H̄m − σIm)yσm)⊗ Ip) = Vm+1(βmz ⊗ Ip)
(14)

By straightforward computations, it is shown that if z =
c− H̄mym then for (13) to hold, we must have

(H̄m − σIm)yσm + zβm = β0c

Thus, we can compute both yσm and βm by solving the
augmented linear system,

[
H̄m − σIm, z

] [ yσm
βm

]
= β0c (15)

Note that we only compute the minimum residual solution
using a Petrov Galerkin condition for the base systems.
We enforce collinearity of the residuals to compute the
approximation for the shifted systems. It is shown that
a solution to (13) is exist if and only is the residual
polynomial satisfies θj �= σ, i = 1, . . . , l and Φm−k(σ) �=∑k

i=0 αiζjσ/(σ − θj), otherwise, the system is singular. We
can compute the QR factorization of [H̄m − σIm, z] = QR
to detect numerical singularity by examining the last diagonal
entry of R. In the case that the solution does not exist, we
simply perform one more iteration and check condition again.
To make this idea more concrete, we present outline of

the shifted GLGMRESIR (GLGMRESIRsh) for solving the
systems (1) in Algorithm 3.

Algorithm 3 GLGMRESIRsh algorithm.
1: At the beginning of a cycle of GLGMRESIRSh, assume
the current problem is (A − σiI)(Xi − X0,i) = βiR0,
with β1 = 1, and where X0,i is the current approximate
solution to the ith shifted system.

2: Apply GLGMRESIR to A and generate equation AVm =
Vm+1(H̄m ⊗ Ip).

3: For the base system, solve the minimum residual reduced
problemmin ||c−H̄my|| for y1, where ci =< V T

i Rm >F

, i = 1, . . . ,m+1. The new approximate solution is X1 =
X0,1 + Vm(y1 ⊗ Ip); The new residual vector is R1 =
R0,1 −AVmy1 = R0,1 − Vm+1(H̄my1 ⊗ Ip)

4: For the other shifted systems i, . . . , s, form z = c−H̄my1.
Apply a QR factorization : [H̄m − σIm, z] = QR. Solve
Ryi = βiQ

T c−βnew
i QT z, using the last row to solve for

βnew
i and the first m rows for yi.

5: The new approximate solution of the ith system is Xi =
Xi,1+Vm(yi⊗Ip), and the new residual is Ri = βnew

i R1

6: Test the residual norms for convergence. If not satisfied,
for i = 2, . . . , s, set βi = βnew

i and for i = 1, . . . , s, set
X0,i = Xi and R0,i = Ri. Then go back to Step 1.

V. NUMERICAL RESULTS
In this section, some numerical experiments will be

described. The goal of these experiments is to examine the
the effectiveness of GLGMRESIRsh (Algorithm 3).
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In all of our runs we use a 0n×p initial guess and choose
different values for σ. Here, m and k denote the number of
iterations for each restart and the number of harmonic Ritz
vectors, respectively. The parameters are taken as m = 30,
k = 15 for all the experiments. The stopping criterion in all
iterative methods is ||Rk||F

||R0||F
≤ 10−6.

All the numerical experiments were performed in MATLAB
2011b. The machine we have used is a PC Pentium(R), CPU
2.80 GHz, 2.00 GB of RAM.
Example 1. Following [11], the first test matrix is a

tridiagonal matrix with entries 0.01, 0.02, 0.03, 0.04, 0.05,
6, 7, . . . , 1000 on the main diagonal, subdiagonal entries all
1 and superdiagonal entries all −1. The shifts are taken six
different values {0, 0.9i, i, 0.6,−i,−1}. The right hand sides
are chosen to be random vectors with p = 5 or 10.
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Fig. 1. Convergence history of GLGMRESIRsh for tridiagonal
problem. Left: p = 5, Right: p = 10.

The results in Fig. 1 highlight the interest of performing
GLGMRESIRsh which could simultaneously solve all the
linear systems at the expense of just the matrix vector
multiplications for the seed systems.
Example 2. We test GLGMRESIRsh on the reaction

diffusion Brusselator model matrices RDB1250 and RDB2048
from Matrix Market [2]. For the examples, we take six values
for the shift, σ = {0, 12 + 1

5 i,
1
2 − 1

5 i, 2, 1 −
1
2 i, 1 − 1

2 i}. As
right hand sides we choose B = rand(n, p) with p = 10.
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Fig. 2. Convergence history of GLGMRESIRsh for RDB1250 and
RDB2048.

Fig. 2 depict the residual history of examples using the
GLGMRESIRsh method. GLGMRESsh can simultaneously
compute solutions for the seed and shifted systems without
any additional matrix vector for iterates of the shifted systems.
And the shifted systems enjoy a faster convergence.
Example 3. Convection diffusion problem
The third example is the convection diffusion problem with

Dirichlet boundary conditions in the unit square [0, 1]2 =

Ω
⋂
∂Ω, where Ω = (0, 1)2,{

−ε�u+ cux + duy = g in Ω

u = 0 on ∂Ω

This problem is discretized with a second order finite
difference scheme for a vertex centered location of unknowns.
We adopt h

ε
max(|c|, |d|) = 2 to satisfy the Péclet condition,

where h = 1
N−1 is the mesh size and N is the number of

points per direction. Here, h = 1/128(1/256), c = d =
256(512) and ε = 1 are taken, then the problem size is
1292(2572) = 16641(66049)) and has 80137(324105) non
zero entries, which is real, sparse and nonsymmetric. The
right hand sides have normally distributed rand elements with
p = 10. The numerical behaviour of the GLGMRESIRsh
approaches are plotted in Fig. 3.
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Fig. 3. Convergence history of GLGMRESIRsh for convection
diffusion problem. Left: n = 16641, Right: n = 66049.

The curves in Fig. 3 highlight interest of performing shift
invariance with GLGMRESIR at each iteration. The curves for
shifted systems enjoys a significant decrease in the number
of matrix vector products than the one for seed system.
In addition, GLGMRESIRsh simultaneously solve all shifted
linear systems in only one global Krylov subspace, leading
to large saving in storage and time. Thus, it is demonstrated
that the potential effectiveness of our algorithm for the shift
systems with multiple shifts and multiple right hand sides.

VI. CONCLUSIONS

In this paper, we have derived the extension of
GLGMRESIRsh for shifted linear systems with multiple shifts
and multiple right hand sides (1). We use a strategy to
make the residuals of the shift systems collinear. With this
condition, our method not only enjoys the benefits of using
deflation technique, but also can exploit the shift invariance,
without computing additional matrix vector products for
solving the shifted systems. Numerical examples also confirm
the effectiveness of our method. Therefore, it is concluded
that the GLGMRESIRsh is a competitive method for solving
the linear systems with multiple right hand sides and multiple
shifts.
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