
International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:8, No:12, 2014

1350

 

 

 
Abstract—Heightened concerns over the amount of carbon 

emitted from coal-related processes are generating shifts to the 
application of biomass. In co-gasification, where coal is gasified 
along with biomass, the biomass may be fed together with coal (co-
feeding) or an independent biomass gasifier needs to be integrated 
with the coal gasifier. The main aim of this work is to evaluate the 
biomass introduction methods in coal co-gasification. This includes 
the evaluation of biomass concentration input (B0 to B100) and its 
gasification performance. A process model is developed and 
simulated in Aspen HYSYS, where both coal and biomass are 
modelled according to its ultimate analysis. It was found that the 
syngas produced increased with increasing biomass content for both 
co-feeding and independent schemes. However, the heating values 
and heat duties decreases with biomass concentration as more CO2 
are produced from complete combustion. 
 

Keywords—Aspen HYSYS, biomass, coal, co-gasification 
modelling and simulation.  

I. INTRODUCTION 

ESPITE the fact that coal has been promoted as the best 
alternative primary energy source due to its abundance 

and availability [1], heightened concern over the amount of 
carbon emitted from coal-related processes are generating 
shifts to the application of biomass. This is because biomass 
resources are as abundant as coal, if not more, and it is 
continuously generated. Biomass is said to be carbon neutral, 
cleaner as they virtually produce no sulfur by-products [2]. 
Hence, the application of biomass as an energy source would 
mean the reduction in conventional fuel dependency. 
Furthermore, the introduction of biomass in coal gasification 
process is claimed to help reduce the total emissions [3], hence 
it can be seen as a ‘bridging’ technology. This is because 
biomass is not without its own limitations. Biomass is more 
prone to degradation if stored for prolonged period and would 
also requires pre-treatment [2] to ensure a more efficient 
conversion. These uncertainties may be eliminated by co-
gasifying coal and biomass in existing coal gasification 
facilities [4].  

Biomass introduction to the gasifier can be carried out 
either through co-feeding or via having an independent 
biomass gasifier and adding the produced syngas downstream 
of the process. Both configurations have their own advantages 
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and disadvantages. For example, biomass co-feeding has an 
advantage of having lower capital costs as no extra costs for 
the independent gasifier is required, but operational problems 
such as excessive slag formation may jeopardize downstream 
processes and reduce the efficiency of the process [5]. On the 
other hand, the independent biomass gasification may prevent 
slagging problems as operating conditions for biomass 
gasification can be tailored accordingly [5]. But, the capital 
and operating costs may increase. 

The objective of this study is to evaluate the biomass 
introduction methods in coal co-gasification, either through 
co-feeding of the biomass or setting up an independent gasifier 
for biomass. The manner in which biomass is introduced to the 
gasification process were examined and compared for the base 
case of 0%, 10%, 25%, 50%, 75% and 100% biomass (B0 – 
B100) by volume, as well as its gasification performance.  

II. THE MODELLING APPROACH 

A. Base Case 

The gasification island consists of an entrained gasifier and 
an equilibrium water-gas shift reactor, with secondary 
equipment such as a mixer, coal slurry pump and heat 
exchangers. The input coal is mixed with water to form coal 
slurry and pumped in the entrained gasifier represented by the 
Conversion Reactor in AspenHYSYS. The bottom product of 
the gasifier is slag and it is sent off to another part of the plant 
(which is not simulated here), while the raw syngas from the 
top is cooled. A fraction of the raw syngas is fed to a WGS 
reactor and mixed with steam to adjust the syngas ratio which 
the amount of required steam depending on the recycle flow 
from the flue gas of the downstream GTCC. The raw syngas is 
subsequently further cooled down before being fed to the 
amine plant, to remove pollutants produced. In this study, two 
biomass feed configurations are evaluated; co-feeding and 
independent gasifiers. 

The base case for this study is a coal to liquid (CTL) 
polygeneration (liquid and power generation) process is based 
on the values simulated by Kreutz et al. [6]. The coal used is 
the Pittsburgh #8 supplied at 0.1313 kmol s-1 and O2 from 
ASU at 7.94 kmol s-1. The coal feed is in slurry form, which 
was suggested at 64% by weight of solid in the slurry [7].  

B. Biomass Introduction Configuration 

Figs. 1 and 2 illustrate the schematic diagram of the two 
configurations for the introduction of biomass in gasification, 
either through co-feeding it with coal (Fig. 1) or by integrating 
an independent biomass gasifier (Fig. 2). In Fig. 1, the coal 
and biomass mixture is reacted with oxygen and/or steam in 
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