
International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:8, No:12, 2014

840

 

 

  

Abstract—At-site flood frequency analysis is used to estimate 

flood quantiles when at-site record length is reasonably long. In 

Australia, FLIKE software has been introduced for at-site flood 

frequency analysis. The advantage of FLIKE is that, for a given 

application, the user can compare a number of most commonly 

adopted probability distributions and parameter estimation methods 

relatively quickly using a windows interface. The new version of 

FLIKE has been incorporated with the multiple Grubbs and Beck test 

which can identify multiple numbers of potentially influential low 

flows. This paper presents a case study considering six catchments in 

eastern Australia which compares two outlier identification tests 

(original Grubbs and Beck test and multiple Grubbs and Beck test) 

and two commonly applied probability distributions (Generalized 

Extreme Value (GEV) and Log Pearson type 3 (LP3)) using FLIKE 

software. It has been found that the multiple Grubbs and Beck test 

when used with LP3 distribution provides more accurate flood 

quantile estimates than when LP3 distribution is used with the 

original Grubbs and Beck test. Between these two methods, the 

differences in flood quantile estimates have been found to be up to 

61% for the six study catchments. It has also been found that GEV 

distribution (with L moments) and LP3 distribution with the multiple 

Grubbs and Beck test provide quite similar results in most of the 

cases; however, a difference up to 38% has been noted for flood 

quantiles for annual exceedance probability (AEP) of 1 in 100 for one 

catchment. This finding needs to be confirmed with a greater number 

of stations across other Australian states. 

 

Keywords—Floods, FLIKE, probability distributions, flood 

frequency, outlier. 

I. INTRODUCTION 

LOOD is one of the worst natural disasters that cause 

millions of dollars of damage each year including loss of 

human lives. Flood frequency analysis is the most direct 

method of estimating design floods, which is needed to design 

bridges, culverts, flood levees and other water infrastructure 

and in various water resources management tasks such as 

flood plain management and flood insurance studies. 

Griffis and Stedinger [1] found that estimates of magnitude 

and frequency of floods using streamflow-gaging stations with 

shorter records of annual peakflow data had higher standard 

errors or uncertainties when compared to estimates using 

stream gauges with longer annual peakflow records. Flood 
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estimation should get the maximum information from the 

available data, be robust with respect to the distribution model 

and potentially influential low flows (PILFs). However, 

streamflow record length at many sites is often insufficient 

and identification of potentially influential low flows (PILFs) 

causes a great difficulty in fitting a probability distribution to 

available flood data. 

Comparing various probability distributions and parameter 

estimation procedure had been done in numerous occasions in 

the past; however, due to the limited length of observed flood 

data as compared to the return period of interest, flood 

frequency analysis is deemed to be a challenging task and 

often associated with controversies [2]. The selection of an 

‘appropriate’ probability distribution and associated parameter 

estimation procedure is an important step in flood frequency 

analysis. Flood frequency analysis has been widely researched 

in the past (e.g. [3]-[16]). In flood frequency analysis, a 

probability distribution is often selected on the basis of 

statistical tests or by graphical methods, and convenience 

plays an important role in this choice [2]. In practical 

applications, empirical suitability plays a much larger role in 

distributional choice than a priori reasoning [17], [18]. 

One of the earliest flood frequency analysis studies for New 

South Wales (NSW) coastal streams was carried out by 

Conway [19]. Kopittke et al. [20] did another study for 

Queensland (QLD). These studies established that the log 

Pearson type 3 (LP3) distribution was the most suitable 

distribution for the study catchments. To compare various 

probability distributions using the data from 172 catchments in 

Australia, McMahon and Srikanthan [3] used the moment ratio 

diagrams. They also concluded that the LP3 was the most 

suitable distribution for Australia. Based on the findings of 

these studies, it was recommended in Australian Rainfall and 

Runoff [21] that flood frequency analysis in Australia [22] 

should follow the footsteps of the USA i.e. to use LP3 

distribution [23]. 

Since the publication of ARR [21], [22], there have been a 

number of studies to compare various probability distributions 

[24], [25]. For example, Nathan and Weinmann [26] examined 

53 catchments from Central Victoria (VIC), with L-moments-

based goodness-of-fit test, and found that the generalized 

extreme value (GEV) distribution was the best-fit distribution. 

Vogel et al. [4] compared a number of distributions using data 

from 61 stations in Australia, using the L-moments ratio 

diagram, they found that the generalized Pareto distribution 

(GPA) was the best-fit distribution followed by the GEV, 

three-parameter lognormal (LN3), and LP3. Haddad and 

Rahman [27] compared a number of distributions and 
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parameter estimation procedures for 18 catchments in 

southeast Australia and found that the GEV distribution was 

the best-fit distribution for the selected catchments. In another 

study, Haddad and Rahman [28] found that the two parameter 

distributions are preferable to Tasmania, with the lognormal 

appearing to be the best-fit distribution for Tasmania. As it 

seems an analyst might choose a different frequency model 

and fitting procedure for each catchment, but this could lead to 

inconsistencies in flood estimates across regions and among 

governmental agencies. National consistency in flood 

frequency estimates is important because these estimates are 

used in the allocation of resources and the implementation of 

the National Flood Insurance Program [29], [30]. For this 

reason, a national methodology should exhibit the 

characteristic of robustness. Robustness in this context means 

that the analysis does not perform poorly when its assumptions 

are violated.  

An important step in flood frequency analysis is the 

detection of the PILFs in the flood data [31].  PILFs are 

unusually small observations of flood data which depart 

significantly from the trend of the rest of the data. 

Identification and treatment of PILFs are important issues in 

flood frequency analysis, because such observations can have 

a large influence on the estimate of extreme flood quantiles. In 

arid regions, even when it rains, channel losses can result in 

annual flood peaks that are zero or nearly zero, so that a LP3 

distribution cannot fit the entire flood record without 

censoring zero values. Furthermore, unusually small values 

can result in relatively poor estimates of the large flood 

quantiles. In frequency analyses, one often uses a probability 

plot to examine if the sample data is consistent with a fitted 

curve [32], [33], unfortunately such decisions can be relatively 

subjective.  The Bulletin 17B explicitly note that not dealing 

with this issue of PILFs would “significantly affect the 

[computed] statistical parameters.” Both Barnett and Lewis 

[34] and Beckman and Cook [32] discussed the notion of 

using outlier tests to identify unusual (high or low) data points 

that otherwise might have undue influence in a flood 

frequency analysis. Using a good low-outlier identification 

procedure has the potential for making low-outlier 

identification less subjective, by providing “rejection criteria 

which enable significance to be assessed” [34]. 

A wide range of test procedures for identifying PILFs have 

been examined in the past (e.g. [35]-[37], [34]), including 

methods for dealing with the case of multiple PILFs 

considered here [38]-[49]. Thompson [35] provided an early 

criterion for the rejection of an outlier based on the ratio of the 

sample standard deviation and an observation’s deviation from 

the sample mean. An alternative test was proposed by Dixon 

[50], [51], who for high outliers proposed the test statistics for 

second most extreme observation in either tail of the 

distribution. Barnett and Lewis [34] also noted similar criteria 

as Dixon [50], [51]. Grubbs [36] and Grubbs and Beck [37] 

proposed a one sided 10% significance level criteria to 

identify PILFs. Rosner [39], [40] developed a sequential two 

sided outlier test, based on a generalization of the Grubbs [36] 

which usually detected outliers either too small or large but 

this procedure was less computationally intensive and easy to 

apply in practice. 

Bulletin 17B [23] was the guideline for flood frequency 

analysis in the United States for more than 30 years. Recently, 

there has been an attempt to revise Bulletin 17B to include 

recent advances in statistical techniques and computational 

resources [52] similar to the current revision of Australian 

Rainfall and Runoff (ARR). In Bulletin 17C, a new low outlier 

identification procedure, the multiple Grubbs-Beck (MGB) 

test [53] has been included. The MGB test is based on 

significance levels computed using the new approximations 

developed by Cohn et al. [29]. The MGB test is a 

generalization of the old Bulletin 17B original Grubbs-Beck 

(GB) test [36], [37].  

 In this paper the original GB test and the MGB test are 

compared using data from six Australian catchments. The 

Bulletin 17B’s original GB test was based only on the 

distribution of the single smallest observation in a sample. As 

a result, even though multiple PILFs in flood data may exist, 

the original GB test rarely identifies more than a single PILF. 

The MGB test employs the actual distribution of the k
th 

smallest observation in a sample of n independent normal 

variates based upon significance levels provided by Cohn et 

al. [29], and is thus suited to test for multiple PILFs. 

Kuczera [25] presented a comprehensive study on flood 

frequency analysis using Bayesian method and incorporated a 

number of probability distributions in his FLIKE software. 

The advantage of FLIKE is that, for a given application, the 

user can compare a number of most commonly adopted 

probability distributions and parameter estimation methods 

relatively quickly using a windows interface. It has additional 

advantages including the ability to (i) incorporate prior or 

regional information; (ii) incorporate stage-discharge 

uncertainty; (iii) assess parameter uncertainty obtained from 

regional information; and (iv) allow for threshold values 

(censoring). Recently a new version of FLIKE has been 

released. The older version of FLIKE needed manual 

identification of PILFs using the original Grubbs and Beck 

test. The new version of FLIKE is incorporated with the MGB 

test which attempts to identify multiple PILFs in the annual 

maximum flood series data. 

The objective of this paper is to compare the performances 

of LP3 and GEV distributions for six selected stations in 

eastern Australia and also to explore the effects of censoring 

PILFs using the original GB test and MGB test.  

II. STUDY AREA 

For this study six catchments from New South Wales 

(NSW), Queensland (QLD) and Victoria (VIC) in Australia 

are considered (as shown in Fig. 1). Catchment area ranges 

from 87 to 900 km
2
 with a mean of 348 km

2
 and median of 

140.5 km
2
. Record length ranges from 33 to 60 years with a 

mean of 48 years and median of 49 years. All of the stations 

have log-space skew values significantly different from zero. 

Missing data points in the annual maximum flood series were 

in filled where possible by two methods. Method one involved 

comparing the monthly instantaneous maximum data (IMD) 
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with monthly maximum mean daily data (MMD) at the same 

station. If a missing month of IMD flow corresponded to a 

month of very low MMD flow, then that was taken to show 

that the annual maximum did not occur during that missing 

month. Method 2 involved a simple linear regression of the 

annual MMD flow against the annual IMD series of the same 

station. It must be mentioned that the regression equations 

developed were used for filling gaps in the IMD record, but 

not to extend the overall period of record.  

Rating curve extrapolation errors were identified by using a 

rating ratio test and treated using the in-built procedure ‘rating 

curve error’ case in FLIKE [25]. Table I shows the catchment 

area and record length for each station. 

 

Fig. 1 Selected six catchments from eastern Australia 

 
TABLE I 

STATION DETAILS SHOWING STATION NAME, RIVER NAME, CATCHMENT AREA, RECORD LENGTH AND PERIOD OF RECORD 

Station ID Station name River name Catchment area (km2) Record length (years) Period of record 

218005 D/S Wadbilliga R Junct Tuross 900 47 1965-2011 

219006 Tantawangalo Mountain (Dam) TantawangaloCk 87 60 1952-2011 

116008B Abergowrie Gowrie Ck 124 58 1954-2011 

125002C Sarich's Pioneer 740 51 1961-2011 

230204 RiddellsCk RiddellsCk 79 38 1974-2011 

232213 U/S of Bungal Dam LalLalCk 157 33 1977-2011 

 

III. METHODOLOGY 

The original GB test [36], [37] uses the at-site logarithms of 

the peak-flow data to calculate a one-sided, 10-percent 

significance-level critical value for a normally distributed 

sample. Although more than one recorded peak flow for a 

stream gage may be smaller than the Grubbs-Beck critical 

value, usually only one non-zero recorded peak flow is identi-

fied from the test as being a PILF. The original GB test which 

was recommended in Bulletin 17B [23], defines a low outlier 

(PILF) threshold as: 

 

����� �  μ 	 
��                                           (1) 

 

where Kn is a one-sided, 10% significance-level critical value 

for an independent sample of n normal variates, and µ and σ 

denote the sample mean and standard deviation of the entire 

data set. Any observation less than Xcrit is declared a ‘‘low 

outlier (PILF)’’ [23]. As per Bulletin 17B, PILFs are omitted 

from the sample and the frequency curve is adjusted, using a 

conditional probability adjustment [23]. Kn values are 

tabulated in section A4 of IACWD [23] based on Grubbs and 

Beck [37]. 

Stedinger et al. [33] provide an accurate approximation of 

Kn for 5 ≤ n ≤ 150: 

 


� 
 	0.9043 � 3.345�log����� 	 0.4046 log�����   (2) 

 

The original GB test only identifies one outlier/PILF from a 

particular data set, but there can be more numbers of PILFs 

available in the data. A method for statistically detecting 

multiple PILFs using a generalized Grubbs-Beck test has been 

developed [54]. The MBG test is also based on a one-sided, 

10-percent significance-level critical value for a normally 

distributed sample, but the test is constructed so that groups of 
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ordered data are examined (for example, the eight smallest 

values) and excluded from the dataset when the critical value 

is calculated. If the critical value is greater than the eighth 

smallest value in the example, then all eight values are 

considered to be PILFs according to this new method.  

Here, one considers whether {X[1:n], X[2:n], …. , X[k:n]} are 

consistent with a normal distribution and the other 

observations in the sample by examining the statistic [29]: 

 

� !":�$ % &
!":�$ 	 '"( �"⁄                      (3) 

 

where X[k:n] denotes the k
th

 smallest observation in the sample, 

and 
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Here the partial mean µk and partial variance σk are 

computed using only the observations larger than X[k : n] to 

avoid swamping. 

To implement the MGB test, recommended for Bulletin 

17C, the following two steps are involved: (i) starting at the 

median and sweeping outward towards the smallest 

observation, each observation is tested with a MGB test 

significance level αout. If the k
th

 smallest observation is 

identified as a low outlier, the outward sweep stops and all 

observations less than the k
th

 smallest (i.e. j = 1, …,k) are also 

identified as low outliers. (ii) An inward sweep always starts 

at the smallest observation and moves towards the median, 

with a significance level of αin. If an observation m≥ 1 fails to 

be identified by the inward sweep, the inward sweep stops. 

The total number of low-outliers/PILFs identified by the MGB 

test is then the maximum of k and m− 1. The algorithm has 

two parameters that need to be specified [29]: (i) outward 

Sweep significance level for each comparison, αout; and (ii) 

inward Sweep significance level for each comparison, αin. 

Bulletin 17B used a 10% significance test with a single 

outlier threshold. The new outlier detection procedure uses 

two multiple threshold sweeps. Those thresholds are the Cohn 

et al. [29] p(k;n) function which correctly describes if the k
th 

smallest observation in a normal sample of n variates is 

unusual. The first outward sweep seeks to determine if there is 

some break in the lower half of the data that would suggest the 

sample is best treated as if it had a number of low outliers. The 

second sweep using a less severe significance level, say p(k;n) 

≤ 10%, mimics Bulletin 17B’s willingness to identify one or 

more of the smallest observations as low outliers so that the 

frequency analysis is more robust. 

A reasonable concern is that a flood record could contain 

more than one low outlier and the additional outliers can cause 

the original GB test statistic to fail to recognize the smallest 

observation as an outlier (by inflating the sample mean and 

variance). This effect is known as masking [38]. Inward sweep 

tests are particularly susceptible to masking [34], therefore an 

outward sweep is desirable to avoid the masking problem [47]. 

Rosner [40] uses a two-sided outward sweep. Spencer and 

McCuen [55] recommended an outward sweep with their test 

for multiple outliers when fitting a LP3 distribution. 

The generalized extreme value (GEV) distribution is a 

family of continuous probability distributions developed 

within extreme value theory to combine the Gumble, Frѐhet 

and Weibull families also known as type I, II and III extreme 

value distributions. Here GEV distribution is used to compare 

the results with the LP3 distribution. 

The LP3 distribution has been used for several decades to 

model annual maximum flood series. Estimation of the 

parameters of the distribution using a MOM estimator in log 

space was suggested by Beard [56]; this method was used 

presumably for computational ease. The only complication 

was the need for frequency factors to compute quantile 

estimates given the sample moments of the logs of the data. 

The needed frequency factors were tabulated in Benson [57] 

and in Bulletin 17B. Kirby [58] provided an excellent 

approximation. Now days they can be computed directly with 

built-in functions in many software packages, including Excel 

and MATLAB. 

To fit the LP3 distribution it is required to calculate the 

mean, standard deviation, and skew coefficient of the 

logarithms of the annual maximum flood data. Estimate of the 

P percent annual exceedence probability (AEP) flood is 

computed by inserting the three statistics of the frequency 

distribution into the equation:  
 

log 12 � �3 � 
24                              (6) 

 

where QP is the P-percent AEP flood or flood quantile; Ẋ is the 

mean of the logarithms of the annual peak flows; KPis a factor 

based on the skew coefficient and the given AEP and is 

obtained from [23]; and S is the standard deviation of the 

logarithms of the annual peak flows. 

The mean, standard deviation and skew coefficient can be 

estimated from the available sample data (recorded annual-

peak flows), but a skew coefficient calculated from small 

samples tends to be an unreliable estimator of the population 

skew coefficient. Accordingly, the guidelines in Bulletin 17B 

[23] indicate that the skew coefficient calculated from at-site 

sample data (station skew) needs to be weighted with a 

generalized, or regional, skew determined from an analysis of 

selected long-term stream gauges in the study region. The 

value of the skew coefficient used in equation 6 is the 

weighted skew that is based on station skew and regional 

skew. However, Australian Rainfall and Runoff 1987 did not 

adopt the weighted skew for application in Australia [22].  

IV. RESULTS 

For three stations (218005, 219006, 116008B), the original 

GB test did not find any PILF but the MGB test found 24, 27, 

29 PILFs respectively and for the remaining three stations 

(125002C, 230204, 232213) the original GB test found only 

one PILF for each of them but the MGB test found 26, 17, 17 

PILFs. These results show a remarkable difference between 

the results by the two methods.  
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TABLE II 

NUMBER OF PILFS IDENTIFIED USING MGB TEST AND THE ORIGINAL GB 

TEST 

Station ID 
Number (%)of PILFs 

identified by MGB test 

Number of PILFs identified 

by original GB test 

218005 24 (51.06%) None 

219006 27 (45.76%) None 

116008B 29 (56.86%) None 

125002C 26(49.01%) 1 

230204 17 (44.74%) 1 

232213 17 (51.52%) 1 

 

Table III presents the log space skews of the original AM 

flood data set and after removing the PILFs using the original 

GB test and the MGB test. This table shows that application of 

MGB results in a greater reduction in log space skew than the 

original GB test. This is likely to affect the quantile estimation 

by LP3 distribution as skew plays an important role in the 

fitting of LP3 distribution.  

Figs. 2 and 3 show how application of GB and MGB tests 

affects the fitting of a probability distribution to the AM flood 

series for Station 218004. The application of GB test did not 

identify any PILF for Station 218004; however, the 

application of MGB test identifies 24 PILFs, the fitting of LP3 

distribution is remarkably better in Fig. 3 (where MGB test is 

applied) than in Fig. 2 (where GB test is applied). In another 

example, Figs. 4-6 show the effects of PILFs on fitting a 

probability distribution to the AM flood series for Station 

230204 where the application of GB test identified only one 

PILF; however, the MGB test identified 17 PILFs. Fig. 6 

shows a better fit of the LP3 distribution to the AM flood data 

series (where MGB test is applied) than in Fig. 5 (where GB 

test is applied). 
 

TABLE III 
SKEW OF EACH STATION WITHOUT REMOVING ANY PILFS, PILFS REMOVED 

BY ORIGINAL GB TEST AND PILFS REMOVED BY MGB TEST RESPECTIVELY 

Station ID 
Skew (no PILFs 

removed) 
Skew (PILFs removed 

by original GB test) 
Skew (PILFs removed 

by MGB test) 

218005 -0.375 -0.375 -0.553 

219006 -0.514 -0.514 0.367 

116008B -0.310 -0.310 -0.079 

125002C -0.901 -0.757 0.095 

230204 -0.671 -0.373 0.079 

232213 -1.244 -1.197 -0.531 

 

 

 

Fig. 2 Flood frequency curve for Station 218005 using LP3 distribution (there was no PILF as per original GB test) 

 

 

Fig. 3 Flood frequency curve for Station 218005 using LP3 distribution (24 PILFs censored as per MGB test) 
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Fig. 4 Flood frequency curve for Station 230204 using LP3 distribution (no PILF censored) 

 

 

Fig. 5 Flood frequency curve for Station 230204 using LP3 distribution (one PILF censored as per original GB test) 

 

 

Fig. 6 Flood frequency curve for Station 230204 using LP3 distribution (17 PILFs censored as per MGB test) 

 

Fig. 7 shows the fitting of the GEV distribution to 

Station230204 without removing any PILFs and Fig. 8 shows 

the fitting of LP3 distribution after removing 17 PILFs. From 

these two plots it is evident that LP3 distribution (Fig. 8) 

shows a better fit to the AM flood series than the GEV 

distribution.
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Fig. 7 Fitting of the GEV distribution to the AM flood data for Station 230204 (No PILF censored) 

 

 

Fig. 8 Fitting of the LP3 distribution to the AM flood data for Station 230204 (17 PILFs censored by MGB test) 

 

Table IV shows the flood quantiles using LP3 distribution 

where the PILFs are identified and censored by the original 

GB test and MGB test for AEPs of 1 in 10, 1 in 20, 1 in 50 and 

1 in 100. It is found that there are notable differences between 

the two methods where flood quantiles show a variation in the 

range of -61% to 28%. Table V shows the variation between 

the flood quantiles estimated by two methods: LP3 with MGB 

test and GEV with L moments. It is found that for Station 

218005 GEV distribution underestimates 1 in 10 AEP flood 

quantile by 6.68%, but for AEPs of 1 in 20, 1 in 50 and 1 in 

100 GEV overestimates the flood quantiles by 4.4%, 24.1% 

and 38%, respectively. For other 5 stations the variations 

between the GEV and LP3 are mixed i.e. a combination of 

over- and under-estimation by 0.24% to 26.7%. These results 

highlight the expected differences in flood quantile estimates 

between the LP3 and GEV distributions in eastern Australia. 
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TABLE IV 

ESTIMATED FLOOD QUANTILES AND PERCENTAGE DIFFERENCES BETWEEN THE TWO SETS OF QUANTILES: LP3 WITH MGB TEST AND LP3 WITH ORIGINAL GB 

TEST 

 
Estimated quantiles (m3/s) using LP3 

distribution (PILFs removed by MGB test) 

Estimated quantiles (m3/s) using LP3 distribution (PILFs removed by  original GB test (% 

difference between LP3 with MGB test and LP3 with original GB test) 

Station ID 
AEPs ( 1 in Y) 

10 20 50 100 10 20 50 100 

218005 1422.74 1780.04 2063.82 2183.63 
1072.7 

(24.60%) 

1704.52 

(4.24%) 

2690.8 

(-30.38%) 

3519.78 

(-61.19%) 

219006 184.37 279.38 427.86 555.27 
133.51 

(27.59%) 
228.33 

(18.27%) 
402.83 
(5.85%) 

576.06 
(-3.74%) 

116008B 920.88 1136.21 1342.61 1451.81 
886.91 

(3.69%) 

1141.43 

(-0.46%) 

1454.31 

(-8.32%) 

1670.81 

(-15.08%) 

125002C 3512.61 4198.86 4887.37 5276.62 
2879.16 
(18.03%) 

3808.77 
(9.29%) 

4866.33 
(0.43%) 

5528.19 
(-4.77%) 

230204 46.02 60.56 76.41 85.86 
34.92 

(24.12%) 
53.71 

(11.31%) 
81.32 

(-6.43%) 
103.21 

(-20.21%) 

232213 26.7 32.38 38.36 41.9 
22.3 

(16.48%) 

28.38 

(12.35%) 

34.89 

(9.05%) 

38.75 

(7.52%) 

 
TABLE V 

COMPARISON OF FLOOD QUANTILES BY LP3 WITH MGB TEST AND GEV WITH L MOMENTS 

 Flood quantiles by GEV-L moments (m3/s) 
Flood quantiles by LP3 with MGB test (m3/s) 

(% difference between LP3 with MGB test and GEV with L moments) 

Station ID 
AEPs (1 in Y) 

10 20 50 100 10 20 50 100 

218005 1333.6 1861.3 2719.2 3522.4 
1422.74 
(-6.68%) 

1780.04(4.
37%) 

2063.82(24
.10%) 

2183.63(38.01%) 

219006 151 220.6 344.1 469.8 
184.37 

(-22.10%) 

279.38 

(-26.65%) 

427.86 

(-24.34%) 

555.27 

(-18.19%) 

116008B 819.1 1074.6 1457.8 1789.5 
920.88 

(-12.43%) 

1136.21 

(-5.73%) 

1342.61(7.

90%) 
1451.81(18.87%) 

125002C 3263.1 4188.7 5488.6 6544.1 
3512.61 
(-7.65%) 

4198.86 
(-0.24%) 

4887.37(10
.95%) 

5276.62(19.37%) 

230204 37.5 52.4 76.9 100 
46.02 

(-22.72%) 

60.56 

(-15.57%) 

76.41(0.64

%) 
85.86(14.14%) 

232213 24.5 30.3 38 43.9 
26.7 

(-8.98%) 

32.38 

(-6.86%) 

38.36 

(-0.95%) 
41.9(4.56%) 

 

V. CONCLUSION 

This paper presents a case study using six catchments from 

eastern Australia which examines two outlier tests being the 

original Grubbs and Beck (GB) test and multiple Grubbs and 

Beck (MGB) test. Two different probability distributions i.e. 

the GEV and LP3 have been adopted in flood frequency 

analysis, which are incorporated into the new FLIKE software. 

For three stations, the original GB test did not detect any 

potentially influential low flows (PILFs); however, for these 

stations MGB test detected 46% to 57% of the annual 

maximum flood peaks as PILFs. For the remaining three 

stations, the original GB test identified one PILF from each 

station and the MGB test identified 45% to 51% as PILFs. 

Between these two methods, the differences in flood quantile 

estimates have been found to be up to 61% for the six study 

catchments. It has also been found that GEV distribution (with 

L moments) and LP3 distribution with the multiple Grubbs 

and Beck test provide quite similar results in most of the 

cases; however, a difference up to 38% has been noted for 

flood quantiles for annual exceedance probability (AEP) of 1 

in 100 for one catchment. This finding needs to be confirmed 

with a greater number of stations across other Australian 

states. 
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