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Generalized Chebyshev Collocation Method
Junghan Kim, Wonkyu Chung, Sunyoung Bu, Philsu Kim

Abstract—In this paper, we introduce a generalized Chebyshev
collocation method (GCCM) based on the generalized Chebyshev
polynomials for solving stiff systems. For employing a technique
of the embedded Runge-Kutta method used in explicit schemes, the
property of the generalized Chebyshev polynomials is used, in which
the nodes for the higher degree polynomial are overlapped with those
for the lower degree polynomial. The constructed algorithm controls
both the error and the time step size simultaneously and further
the errors at each integration step are embedded in the algorithm
itself, which provides the efficiency of the computational cost. For
the assessment of the effectiveness, numerical results obtained by the
proposed method and the Radau IIA are presented and compared.
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I. INTRODUCTION

THE embedded Runge-Kutta (ERK) method is a popular
strategy for solving initial value problems described by

dφ

dt
= f(t, φ(t)), t ∈ [t0, tf ]; φ(t0) = φ0. (1)

However, it is well known that ERK doesn’t work well
when the stiffness of system (1) is high (see [1]). The aim
of this paper is to construct an algorithm of ERK type so
called a generalized Chebyshev collocation method (GCCM)
for solving the stiff system. The developed GCCM is based
on the generalized Chebyshev polynomials introduced by
[2], [3] and extensively used for approximating functions
and integrals([7], [8]). The main theory of the generalized
Chebyshev polynomial approximation is to use node points
duplicately for Chebyshev polynomials of consequent degrees.
The GCCM of ERK type is constructed from this idea together
with the Chebyshev collocation method (CCM) developed by
[5], [6], [9], [11]. In particular, it uses two different orders of
CCM together with two Chebyshev polynomials of different
degrees p and q (q > p) and hence we would like to denote
GCCMp(q) simply. Practically, the solution at each integration
scheme is calculated with the CCM of order 4 denoted by
CCM4 using the Chebyshev interpolating polynomial on the
Chebyshev-Gauss-Lobatto (CGL) nodes given by

sj = cos(
n− j

n
π), j = 0, 1, · · · , 4.

To calculate the error, we develop the CCM of order
6 using the Chebyshev interpolating polynomial on the
Clenshaw-Curtis (CC) nodes together with CGL nodes given
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by

{τk} = {sj} ∪ {cos(3
8
π), cos(

5

8
π)}, k = 0, 1, · · · , 6.

Assume that φm is known approximation for φ(tm) and em
is known approximation of Em = φ(tm)−φt at time tm. Our
aim is to find approximations at time tm+1,φm+1 and em+1.
To find these values, we have to solve the IVP given by{

φ′(t) = f(t, φ(t)), t ∈ [tm, tm+1],

φ(tm) = φm + Em.
(2)

First, to use Chebyshev Collocation Method, let φ̄(s) :=
φ(t(s)) be a function on linear transformated domain from
[tm, tm+1] to [−1, 1]. Then, the IVP is changed to

{
φ̄′(s) = φ′(t(s))t′(s) = h

2 f
(
t(s), φ̄(s)

)
, s ∈ [−1, 1],

φ̄(−1) = φ(tm) = φm + Em.

We now try to introduce generalized Chebyshev interpolating
polynomials for approximating a given function g. From now
on, we define

tk =

{
sk, if N = 4,

τk, if N = 6,

where N means degree of polynomial. Let pN(s) be the
Chebyshev interpolating polynomial of degree N satisfying

pN (tk) = g(tk), 0 ≤ k ≤ N.

Then, pN (s) can be expressed by the Lagrangian interpolation
as follows:

pN(s) :=
N∑

k=0

g(tk)lk(s), lk(s) :=
qN (s)

(s− tk)q̇N (tk)
,

where q̇N (s) := dqN (s)
ds

and qN (s) is a polynomial of degree
N + 1 defined by

qN (s) :=

N∏
j=0

(s− tj).

Using the points tj and basis lk, define a matrix L by L =
(Ljk), where Ljk = l̇k(tj). Then, for fourth-degree,

L =

⎛
⎜⎜⎜⎝

1√
2

√
2 − 1√

2
1− 1√

2

−√
2 0

√
2 − 1

2
1√
2

−√
2 − 1√

2
1 + 1√

2

2(
√
2− 2) 2 −2(2 +

√
2) 11

2

⎞
⎟⎟⎟⎠

and for sixth-degree, one can get L similarly. Using the
Chebyshev interpolating polynomial pN (s), let

φ̄(s) = pN (s) + ρN (s) (3)
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to approximate the solution φ̄, where ρN is the local truncation
error. After differentiating both sides of (3) and collocating
the resulted equation at the points tj , we can obtain a discrete
system of equations as follows :

h

2
f
(
tmj

, φ̄
(
tj
))− N∑

k=0

φ̄
(
tk
)
l̇k(tj) = ρ̇N

(
tj
)
, 1 ≤ j ≤ N,

(4)
where tmj

:= tm+ h
2 (1+ tj). By truncating the vector ρ̇N (tj)

in (4) and perturbing the initial value of (2) with φm + em,
the system (4) leads to

N∑
k=1

αk l̇k(tj)− h

2
f
(
tmj

, αj

)
= −(φm + em)l̇0(tj) (5)

for 1 ≤ j ≤ N , where αj means an approximation for the
exact solution φ̄(tj), j = 1, · · · , N . By introducing α defined
by

α :=
[
α1, · · · , αN

]T
,

the discrete system (5) can be simplified as follows.

Lα− h

2
f(t, α) = −L0(φm + em). (6)

Then, the nonlinear system (6) made from GCCM is solved
with a Newton iteration method. By solving system (6), we
can summarize the developed algorithm GCCM4(6) by

{
φm+1 = F (φm, em),

em+1 = G(φm, φm+1, em),

where the above two equations are obtained by the CCM4 and
CCM6, respectively. In particular, the error formula of em+1

is obtained with the observation that there are a Newton’s
formula between Chebyshev interpolating polynomial p6(s)
and p4(s) given by

p6(s) := p4(s) +
2∑

k=1

ck(T4−k(s)− T4+k(s)),

where coefficients {ck} are determined. Indeed, e = p6−p4 =∑2
k=1 ck(T4−k(s)− T4+k(s)).
For the time step control, we use the formula for a given

tolerance rtol and atol

hnew := α× hold

E
,

where α is the safety factor and E := atol + rtol ×
max(φm, φm+1). The proposed algorithm controls both the
errors and the time step size simultaneously and it must be
noted that the errors at each integration step are embedded in
the algorithm itself. This is a novelity of GCCM and reduce an
accumulation of the estimated errors. In other words, by giving
the usage of estimated error, we can improve the capability of
the existing method, while existing method uses the estimated
error only for the step-size selection.

II. NUMERICAL RESULT

To assess the improvement and effectiveness of the proposed
scheme, Lambert’s problem [4] and Prothero-Robinson
equation [10] are solved. For a comparison of the numerical
result, a popular existing algorithm Radau5 [1] is used.

Example 1. Consider a problem from Lambert given by

y′1(t) = −2y1(t) + y2(t) + 2 sin(t),

y′2(t) = 998y1(t)− 999y2(t) + 999(cos(t)− sin(t)),
(7)

with initial conditions y1(0) = 2, y2(0) = 3. The analytic
solution is given by

y1(t) = 2e−t + sin(t), y2(t) = 2e−t + cos(t). (8)

Note that the stiffness is high. We have numerically solved
the problem on the interval [0,10] and use the numerical
solutions as the sum of the approximate solution φm and
the estimated error em to give more accurate results. As a
measure of the effectiveness, we calculate both the required
number of function evaluations (nfeval) and the computational
time (cputime) to solve the problem. We calculate the L∞
norm for the absolute error in log-scale at the final time for
each problem. The problem is solved by varying the relative
tolerance from 1.0e-5 to 1.0e-8 and absolute tolerance from
1.0e-7 to 1.0e-10. The numerical results are presented in
Table I,II and displayed on Fig.1 (a) and (b), where y and
x axes represent the absolute errors and either cputime or
nfeval, respectively. All the marked points in figure from left
to right are corresponding to the given tolerances from large
to small, respectively. One can see that the proposed scheme
is more efficient than the other scheme. For example, let us
consider the point in the right corner. In Fig.1 (b), the point
for Radau5 evaluate 2108 number of function with the error
7.0e-10. However, GCCM4(6) needs 505 nfeval only with the
error 1.0e-12.

TABLE I
COMPARISON OF ERRORS SPENT CPUTIME

Ex1 GCCM46 Radau5
Rtol Err CPUtime Err CPUtime

10
−5 2.31 ×10

−9 0.0266 1.41 ×10
−7 0.0293

10
−6 1.77 ×10

−10 0.0378 2.59 ×10
−8 0.0446

10
−7 1.2 ×10

−11 0.0548 5.1 ×10
−9 0.0748

10
−8 1.0 ×10

−12 0.0850 7.0 ×10
−10 0.1401

TABLE II
COMPARISON OF ERRORS VERSUS NUMBER OF FUNCTION-EVALUATIONS

Ex1 GCCM46 Radau5
Rtol Err nfeval Err nfeval

10
−5 2.31 ×10

−9 162 1.41 ×10
−7 345

10
−6 1.77 ×10

−10 235 2.59 ×10
−8 555

10
−7 1.2 ×10

−11 335 5.1 ×10
−9 1045

10
−8 1.0 ×10

−12 505 7.0 ×10
−10 2108

Example 2. We test the Prothero-Robinson equation, which
is a particular case of the family of scalar equation proposed
by Prothero and Robinson and constitutes a stiff problem,

φ′(t) = ν(φ(t) − g(t)) + g′(t), t ∈ (0, 10]; φ(0) = 1,
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where the eigenvalue ν is ν = −106 and g(t) = cos(t). The
exact solution is given by φ(t) = sin(t). The problem is
solved by varying the relative tolerance from 1.0e-7 to 1.0e-10
and absolute tolerance from 1.0e-9 to 1.0e-12. The numerical
results are displayed in Fig. 2 and Table III,IV, from which
one can see that the presented method are better than Radau5.

TABLE III
COMPARISON OF ERRORS SPENT CPUTIME

Ex2 GCCM46 Radau5
Rtol Err CPUtime Err CPUtime

10
−7 3.59 ×10

−11 0.0031 1.25 ×10
−7 0.0067

10
−8 3.58 ×10

−12 0.0036 1.64 ×10
−8 0.0089

10
−9 2.1 ×10

−13 0.00083 9.0 ×10
−10 0.0148

10
−10 5.0 ×10

−14 0.0190 1.0 ×10
−10 0.0314

III. CONCLUSION

In summary, a generalized Chebyshev collocation method
of ERK-type based on generalized Chebyshev approximations
is newly introduced for solving stiff initial value problem.
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Fig. 2. Comparison of errors spent cputime (a) and versus number of
function-evaluations (b)

TABLE IV
COMPARISON OF ERRORS VERSUS NUMBER OF FUNCTION-EVALUATIONS

Ex2 GCCM46 Radau5
Rtol Err nfeval Err nfeval

10
−7 3.59 ×10

−11 22 1.25 ×10
−7 74

10
−8 3.58 ×10

−12 28 1.64 ×10
−8 130

10
−9 2.1 ×10

−13 65 9.0 ×10
−10 264

10
−10 5.0 ×10

−14 158 1.0 ×10
−10 620

Using the CCM of two different convergence orders 4 and
6, the solution and the error are calculated efficiently and also
we suggest a methodology that contains itself the estimated
error at each integration step. One can see that the suggested
algorithm is more efficient than Radau5 throughout several
numerical tests.
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