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 
Abstract—In this study, we aim to demonstrate a microgrid 

system experimental simulation for an easy understanding of a 
large-scale microgrid system. This model is required for industrial 
training and learning environments. However, in order to create an 
exact representation of a microgrid system, the laboratory-scale 
system must fulfill the requirements of a grid-connected inverter, in 
which power values are assigned to the system to cope with the 
intermittent output from renewable energy sources. Aside from that, 
during fluctuations in load capacity, the grid-connected system must 
be able to supply power from the utility grid side and microgrid side in 
a balanced manner. Therefore, droop control is installed in the 
inverter’s control board to maintain a balanced power sharing in both 
sides. This power control in a stand-alone condition and droop control 
in a grid-connected condition must be implemented in order to 
maintain a stabilized system. Based on the experimental results, power 
control and droop control can both be applied in the system by 
comparing the experimental and reference values. 

 
Keywords—Droop control, droop characteristic, grid-connected 

inverter, microgrid, power control.  

I. INTRODUCTION 

N recent years, production of greenhouse gases from fossil 
fuel combustion contributes to increment in global 

temperature and causing various impacts to human and 
environment. Apart from that, increasing demand in energy can 
cause problems such as grid imbalance [1] and thus, more 
power plants need to be built. Therefore, in generating new 
sources of energy, implementation of renewable energy such as 
solar energy and wind energy should be maximized. In order to 
create a clean energy generation system, the system cannot 
depend entirely to the renewable energy sources as intermittent 
output from the sources will affect the stability of the system. 
Thus, a small-scale power generation and distribution system 
known as microgrid was created and connected to the main grid 
while maintaining a synchronized frequency and voltage levels.  

Microgrids are located at distribution levels and have at least 
one dispersed energy generation (DG) sources such as wind 
turbine, photovoltaic cells, or storage devices forming 
interconnection with the utility power generation with minimal 
disturbances while supplying energy to local loads. [2] 
Microgrids can also be operated in islanding mode when grid 
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disturbances occur at the existing power utility to prevent wide- 
scale power outages. Several microgrid research projects have 
been developed in recent years such as Consortium for Electric 
Reliability Technology Solutions (CERTS) MicroGrid [3] and 
European Union (EU) Microgrids Research Project. [4]  

In order to achieve a flexible operation between grid-forming 
mode and grid-injecting mode in a microgrid system, a control 
design with adaptive droop regulation method was proposed by 
J. C. Vasquez et al. [5] in which voltage and current is 
examined at the point of common coupling to modify the droop 
parameters. Droop control refers to an equal sharing of load 
between generating units operating in parallel [6], for instance, 
dispersed energy generation system. Each generating units has 
its own droop characteristic that determines the power output 
from each unit according to load changes and enables load 
sharing simultaneously.  

In this research, a laboratory scale of microgrid system was 
introduced and islanding-mode operation experiments are 
conducted prior to grid-connected mode experiment. The main 
objective of this research is to develop a balanced microgrid 
system experimental simulation for learning environments as 
well as industrial training, and implementing droop control in 
the system. The load capacity was changed while maintaining a 
constant frequency level without exceeding nominal value. 
Inverter is the most vital part of this research as it operates to 
monitor the voltage and current values at both grid side and 
microgrid side while controlling the power supplied from the 
microgrid side by comparing to the power levels in the grid 
side.  

II. GRID-CONNECTED INVERTER 

Grid-connected inverter is an inverter which is connected 
directly to the electric grid including transmission grid and 
distribution grid. It converts DC output from renewable energy 
generation such as photovoltaic cells and small hydroelectric 
generation into AC output. A balanced frequency and voltage 
levels synchronized with the grid is the most important factor to 
make an interconnection between the inverter and the grid. In 
order to satisfy both grid-forming connection and 
grid-connected condition, the inverter is controlled by 
assigning values of several parameters such as frequency, 
voltage, and power at the point of common coupling (PCC) to 
its control system.  

These parameters are vital for the safety of both microgrid 
and the power utility. For example, during faults at the power 
utility side, connection with inverter will be stopped and the 
inverter will operate in islanding mode. In this mode of 
operation, power will only be supplied by dispersed energy 
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Fig. 11 Droop control theoretical and experimental result 
 
The base frequency and the base power of this system were 

50Hz and 1kW respectively. Droop power control in this 
experiment was created to be operating in a limited range 
between 50W (0.05p.u.) and 150W (0.15p.u.) that was already 
assigned in the programming code. In order to imitate the 
increment and decrement in load power demand, a three-phase 
variable resistor was used. Increment in load power demand 
will cause a small frequency drop that will induce increment in 
power output from the generating units. From Fig. 11, during 
load demand increment at 40% droop, the inverter increased its 
power output and took more power supplying proportion 
compared to the synchronous generator. The synchronous 
generator generated an output that followed the remaining 
power required according to the output from the inverter. 
During 60% droop, the inverter generated a lesser power output 
change compared to the synchronous generator as the droop 
characteristic of the inverter has a higher gradient value.  

VII. CONCLUSION 

From the results obtained, output power level at the 
microgrid side will follow the power level change at the grid 
side during droop control in accordance to the increment and 
decrement of the load capacity. The frequencies at both sides 
were maintained within a nominal range. Hence, small-scale 
microgrid system was established using experimental modules 
that represent vital parts of the system including inverter, and a 
stabilized droop control was produced in this research. This 
laboratory scale microgrid system is expected to be a 
simulation model in learning environments and to analyze the 
problems that may happen in a real large-scale microgrid 
system.  
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