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Abstract—Different services based on different switching 

techniques in wireless networks leads to drastic changes in the 
properties of network traffic. Because of these diversities in services, 
network traffic is expected to undergo qualitative and quantitative 
variations. Hence, assumption of traffic characteristics and the 
prediction of network events become more complex for the wireless 
networks. In this paper, the traffic characteristics have been studied 
by collecting traces from the mobile switching centre (MSC). The 
traces include initiation and termination time, originating node, home 
station id, foreign station id. Traffic parameters namely, call inter-
arrival and holding times were estimated statistically. The results 
show that call inter-arrival and distribution time in this wireless 
network is heavy-tailed and follow gamma distributions. They are 
asymptotically long-range dependent. It is also found that the call 
holding times are best fitted with lognormal distribution. Based on 
these observations, an analytical model for performance estimation is 
also proposed.  
 

Keywords—Wireless networks, traffic analysis, long-range 
dependence, heavy-tailed distribution. 

I. INTRODUCTION 

IRELESS technology is advancing at a very fast rate 
and mobile phone has emerged as the primary mode of 

personal communication for convenience and ease of use with 
anywhere anytime anytype service. Mobile devices with 
multiple features are widely used all over the world for all 
personal communications services such as voice and data 
services. This has fuelled in an exponential increase of service 
demands through wireless networks. To cater the ever growing 
the demand, the mobile network service providers are facing 
the challenges of efficiently using the available resources. In 
wireless networks, the bandwidth, i.e. radio spectrum 
availability for initiating communications is the main concern. 
In addition, because of its support to mobility and roaming, 
the bit rate presently supported is limited where as the demand 
for the same is high. The next generation wireless networks 
will face the challenges to combine existing heterogeneous 
networks for high speed mobile communications with multiple 
services. 

Therefore, traffic engineering is an important design tool to 
support different applications with different service 
requirements. To achieve optimum performance, designers 
and engineers must devise efficient techniques for mobility as 
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well as resource management to meet next generation 
demands. It is important to understand the properties of 
wireless network traffic, to predict and to manage mobility [1] 
[2] for designing an efficient and robust wireless network. 
Data traffic was used for developing dynamic access of 
channels by analysing traffic data in an urban area. [3], [4]. 
The traffic capacity of code-division multiple access (CDMA) 
networks was predicted by modelling each cell as an 
independent Markov queue and the number of users in each 
cell as an independent random Poisson process. [5] In [6], the 
author presented the user-behaviour in a high speed packet 
access (HSPA) network. Empirical analysis of collected traffic 
traces have indicated the presence of self similarity in wired 
network traffic [7]-[9]. Multiclass Ethernet traffic shows long 
range dependencies over a period of time [9], [10]. This is to 
be contrasted with telephonic traffic which follows Poisson 
distribution in its arrival and Exponential distribution in 
departure. In traditional Poisson traffic [11], the short-term 
fluctuations are average out and come out with a constant 
mean value, when it is integrated over a longer time. The 
presence of multi-class traffic in wireless networks brings it 
closer to the wired networks and does not guarantee to behave 
the traditional way it is modelled for [12]-[15]. Multimedia 
applications, messaging, internet applications, e-commerce 
etc., may cause the traffic to show self-similarity like wired 
networks [10]. Hence, many of the previous assumptions, 
upon which wireless systems have been designed, may no 
longer be valid in the presence of self-similar traffic [16]. 

To analyse the network performance and to optimize the 
resource utilization, efficient modelling of the network traffic 
is of prime importance [17]. Most of the works in wireless 
networks has been done for voice traffic in circuit-switch 
multiplex network using Erlang B and C models. The Erlang 
models are based on the assumptions that the calls are 
independent identically distributed (iid) with Poisson arrival 
and exponential call holding time [18]. Now-a-days, multiple 
flow types are found in wireless network traffic which means 
its characteristics are not exactly the same as that of circuit-
switched telephone traffic. Hence, the assumptions of Poisson 
arrival and exponential departure do not hold true for wireless 
traffic [16], [19]-[21]. Therefore, Erlang model may not 
estimate the actual blocking probabilities of the wireless 
traffic. Efforts have been made, to characterize wireless traffic 
based on measurements specially, for estimating the impact of 
emerging popular applications [16], [17], [20]-[24]. 

In this work, raw network data traces were collected from a 
wireless network from service provider's MSC. The collected 
data contains raw data of traffic events occurring among 
mobile phones and base stations. Various characteristics of 
this large collection of data were analysed to determine call 
Inter-arrival times distribution and call holding time 
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distribution. The self-similar nature of the traffic is also tested. 
To summarize, the current work describes a novel approach of 
designing the wireless networks through analysis of the actual 
traffic data, collected from the MSC of a wireless network that 
supports multiple services. Based on the observations, an 
analytical model for performance measures of wireless 
network is also proposed.  

Rest of the paper is organised as: Section II describes data 
collection, Section III deals with the statistical analysis of the 
data, Section IV discuss the results of the data analysis and 
performance model, Section V concludes the paper. 

II. DATA COLLECTION 

The analysed data were collected from a wireless backbone 
which provides services like messaging, web chatting, video 
streaming, e-mail, internet browsing, video/audio 
downloading, from a service provider. It supports packet data 
speeds of up to 307 kbps in a single 1.25 MHz channel, up to 
40 simultaneous voice calls per single 1.25 MHz FDD 
channel, Short Messaging Service (SMS), Multimedia 
Messaging Service (MMS), MMS enable graphics, pictures, 
video or music to be attached to text messages and sent to 
mobile devices or computers, music and video downloads. 
The collected traffic trace contains call arrival time, departure 
time, packet size, dropped call, call originating node, home 
station ID, foreign station ID (Care-of-Address). Table I 
presents the average trace data of 8 busiest hours used for 
analysis in this work.  

 
TABLE I 

AVERAGE TRACE DATA OF 8 BUSIEST HOURS 

Time Total Calls Average Calls/Sec 

1st Hour 29,885 0.35 

2nd Hour 26,276 0.41 

3rd Hour 25,013 0.34 

4th Hour 16,142 0.42 

5th Hour 18,345 0.30 

6th Hour 20,658 0.28 

7th Hour 25,439 0.22 

8th Hour 30,732 0.21 

III. STATISTICAL ANALYSIS 

A. Self-Similarity, Long-Range Dependence and Heavy 
Tailed Distributions 

In this paper, the determination of presence of Self 
Similarity and long-range dependence in wireless traffic is 
stressed by estimating the Hurst Parameter and heavy-
tailedness of the traffic distributions [16]. The Hurst parameter 
[25] H is a measure of the level of self-similarity of a time 
series and its long-range dependence. 

Let  3,2,1,0,: =tX=X t
 represent the stochastic [26] 

stationary packet arrival process with mean  tXE=μ , 

variance  tXVar=σ 2  and autocorrelation function (ACF)  

 
   

2σ

μXμXE
=R(k) k+tt  , 

where 2,1,0,=k  and represents the time lag of the process. 

tX  represents the call arrivals at the tht  time slot of 10 ms 

each. If the whole sample size is divided into non-overlapping 
blocks of size 3,2,1,=m , then the new stationary time 

series 
 

 3,2,1,: =kX=X (m)
k

(m)  

 
can be obtained by averaging the original data series X. 

For each 3,2,1,=m , the series (m)
kx  can be expressed 

as  
  

  1
1

1  k,x++x
m

=x km+mkm
(m)
k

 

 
This represents the same stationary stochastic process [26] 

as X with mean  (m)XE=μ , variance 
 

    R(k)km
m

+
m

σ
=XVar (m) 
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Now, both the series (m)X  and X  will have the equal 
Self-Similar [10] nature when equations 

 

a) R(k)=(k)R(m)  and b) β2(m) mσ=)Var(X   
 

are satisfied. For large m which is the case for network traffic 
analysis, the process is said to be asymptotically Self-Similar 
and is defined as 

 

  β(m) cm=XVar  , 
 

where c is constant, m . 
It shows that the variance of the sample mean decreases 

more slowly the reciprocal of the sample size m  that implies 





0=k

=R(k) . The value of Hurst parameter can be calculated as 

2/1 β=H  . It can also be calculated from 
 

   m,)(k+)+(k(k)R(m) 2H2H2H 12k1
2

1 . 

 
For a second-order stationary process to be Long-range 

dependence [24], the value of H should between 0.5 and 1. A 

value of 0.5  indicates the absence of self-similarity and the 
value closer to 1, the greater the degree of long-range 
dependence.  
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B. Goodness-of-Fit Test 

All In most network analysis, the knowledge of underlying 
distribution is required and mostly it is assumed based on prior 
evidences. When the underlying distribution is not known or 
not dependable, it is important to have some type of test that 
can establish the "Goodness-of-Fit" between the postulated 
distribution type of random variable X and the evidence 
contained in the experimental observations. Graphical 
methods are generally used to determine goodness of fit. We'll 
use analytical methods. 

In our case, X is a discrete random variable that represents 
the wireless network traffic data with unknown pmf given by 

  ip=X(i)P . Now, we'll test the null hypothesis that X  

possesses a certain specific pmf given by 
0ii p=p , 

10  ki . Our goal then is to test 0H against 1H , where:  

 

0ii p=pH :0 , 12,1,0, k=i , 01 : HnotH  

 

Now, let we have n  observations and iN  be the observed 

number of times (out of n ) that the measured value of X  

takes the value i . iN  is clearly a binomial [26] random 

variable with parameters n  and ip  so that   ii np=NE  

and   )p(np=NVar iii 1 . Therefore, the statistics  

 

 
 1

0

2k

=i i

ii

np

npN
=Q  

 

is chi-squire distribution [26] with )(k 1  degree of freedom 

and can be written as 
 

 



1

0

2
2

1 exp

expk

=i
k ected

ectedobserved
=χ  

 

here, X  is a continuous random variable and the hypothesis 

test for the distribution of X  is 
 

(x)F=(x)Fx,allforH 0X:0  

 
against  

(x)F(x)FthatsuchxexiststhereH X 01 :   

 

The chi-squire test was applied here but image of X has to 
be divided into a finite number of categories and hence there 
will be a loss of power of the test. Therefore, Kolmogorov-
Smirnov [20] test is preferred for continuous population 
distribution. In this test, the random samples are first arranged 
in order of magnitude so that the values are assumed to satisfy 

nxxxx  321 . Then the empirical distribution 

function (x)ψn  is defined as:  
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xxxn,i

x<x=(x)ψ
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The alternative definition of (x)ψn  is: 

 

n

xarethatsampletheinvaluesofnumber
=(x)ψn

  

 
A natural measure of deviation of the empirical distribution 

function from (x)F0 is the absolute value of the difference: 

 

 (x)F(x)ψ=(x)d nn 0  

 

Since (x)F0  is known, the deviation (x)dn can be 

calculated for each value of x . The largest of these values, as 

x  varies over its full range, is an indicator of how well (x)ψn
 

approximates (x)F0 . As (x)ψn  is a step function with n  

steps and (x)F0  is continuous and non-decreasing, it suffices 

to evaluate (x)dn at the left and right end points of the 

intervals  1+ii x,x . Then, the maximum value of the (x)dn  

is the value of the Kolmogorov-Smirnov (K-S) estimator 
defined by:  

 
 (x)F(x)ψ

x

=(x)d nn 0sup   

 

We reject the null hypothesis at a level of significance α  if 

the observed value of the statistic nd  exceeds the critical 

value αn;d , otherwise we rejects alternative hypothesis 1H . 

IV. ANALYSIS AND RESULTS  

The traced data for call inter-arrival times and call holding 
times were analysed. The Kolmogorov-Smirnov [20] test were 
performed to determine the best fit distribution for each trace 
of call inter-arrival times and call holding times. Normal 
distribution, exponential, weibull, lognormal, gamma 
distributions were considered to determine the goodness-of-fit 
test. The parameters are estimated for call inter-arrival times 
with the maximum likelihood method [21] and are given in 

Table II. 1=h  indicates that the null hypothesis test is 

rejected when the Kolmogorov-Smirnov test parameter d  is 

greater than critical value. 0=h  means the hypothesis for 
the distribution is accepted. Tests are performed with 90% 
confidence. p-value or descriptive level of a test is defined as 
the probability of getting a result as extreme as, or more 
extreme than, the observed result under null hypothesis i.e. the 

p-value of a test 0H is the smallest level of significance a at 
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which the observed test result would be declared significant or 

would declared indicative of rejection of 0H . 

We also calculated the autocorrelation function, tested self 
similarity and Long-range dependency of the traced traffic 
data. 

TABLE II 
 K-S TEST RESULTS FOR CALL INTER-ARRIVAL TIMES  

Distribution Para meter 1st hour 2nd hour 3rd hour 4th hour 

Normal h 1 1 1 1 

p 0.0053 0.0047 0.0046 0.0038 

d 0.0282 0.0325 0.0252 0.0188 

Exponential h 1 1 1 0 

p 0.054 0.043 0.041 0.035 

d 0.0250 0.0281 0.0295 0.0311 

Weibull h 0 0 0 0 

p 0.422 0.401 0.382 0.324 

d 0.0150 0.0141 0.0137 0.0131 

Gamma h 0 0 0 0 

p 0.482 0.436 0.402 0.378 

d 0.0162 0.0147 0.0137 0.0128 

Lognorma1 h 1 1 1 1 

p 2.36e-20 1.88e-20  1.75e-20 1.59e-20 

d 0.0802 0.0824 0.0835 0.0857 

A. Call Inter-Arrival Times  

To determine the distribution of call inter-arrival pattern, 
Normal, exponential, Weibull, gamma, lognormal distribution 
were considered and found that except normal, other four 
distributions namely exponential, Weibull, gamma, lognormal 
fit the data better but only Weibull and Gamma distribution 
pass the significance test with 90% confidence for all hourly 
traces where as exponential pass hypothesis test only for two 
hourly traces. The higher p values of Weibull and Gamma 
distribution show better fit than exponential distribution. Non 
Poisson and different distribution is also reported by [25] and 
[20]. Call inter-arrival time distribution is shown in Fig. 1. 

 

 

Fig. 1 Call inter-arrival distribution 
 
The autocorrelation [26] coefficients of the call inter arrival 

times with different lags from the hourly traces are also 
determined with 95% and 99% confidence levels and they are 
shown in Table III. Most of the autocorrelation [26] 
coefficient values, computed with the lag values smaller than 
60, are found to remain outside the range of the confidence 
intervals. This shows non negligible correlation among call 
inter-arrival times. The traces of call inter-arrival times were 
also tested for long range dependence by estimating the Hurst 

parameter. Estimates of H  for hourly traces are shown in 

Table IV. For all the traces H is found to be greater than 0.5. 
This shows that call inter-arrival times exhibit long-range 
dependency and self-similarity 

 
TABLE V 

VALUE OF H FOR HOURLY TRACES O F CALL HOLDING TIMES 

Lag Coefficients 
10 -0.036 

20 0.017 

30 0.043 

40 0.041 

50 -0.046 

60 0.023 

70 -0.032 

80 -0.045 

90 0.024 

100 -0.036 

110 -0.017 

120 -0.030 

130 -0.032 

 
TABLE IV 

H VALUE FOR CALL INTER-ARRIVAL TIMES  

Hour Value of H  

1 0.832 

2 0.921 

3 0.850 

4 0.901 

5 0.846 

6 0.887 

7 0.919 

8 0.827 

B. Call Holding Times  

We compare the distribution of the call holding times with 
the same procedure that were followed for the call inter-arrival 
times. The probability density function of the call holding 
times is shown in Fig. 2. None of the considered distributions 
namely Normal, Exponential, Weibull, Gamma, Lognormal 
passes the test when the traces are tested with 10% and 5% 
significance levels. Therefore, randomly chosen sub-traces of 
length 1,000 extracted from each hourly trace were used to test 

with a significance level α  of 1%. This time only lognormal 
distribution passes the test for very few sub-traces. When sub-
traces of length 500 are tested with the same significance 
level, the lognormal distribution [27], [21] exhibits the best fit. 
It passes the Kolmogorov-Smirnov (K-S) test for almost all 
1000 sample sub-traces of all hourly traces. The test rejects the 
null hypothesis when those sub-traces are compared with the 
other four candidate distributions namely normal, exponential, 
Weibull, and gamma. Non Poisson and different distribution is 
also reported by [25], [27] and [20]. 
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Fig. 2 Call holding times distribution 
 
The autocorrelation coefficient of the call holding times 

from the hourly traces were determined as shown in Table V 
and found that there are no significant correlations for non-
zero lags because all but a few autocorrelation coefficients are 
within the 95% and 99% confidence intervals. The long-range 
dependence in the call holding times is also investigated by 

calculating the Hurst parameter H as shown in Table VI. For 
all traces 0.5<H  showing that call holding times are not 
long-range dependent. 

 
TABLE VI 

H  VALUE FOR CALL HOLDING TIMES  

Hour Value of H  

1 0.472 

2 0.478 

3 0.458 

4 0.456 

5 0.483 

6 0.473 

7 0.465 

8 0.486 

C. Performance Measures for the QoS 

Let us consider a wireless network with N sources of 
multiclass traffic that can be broadly categorized as elastic 
traffic and non-elastic traffic [15]. Voice call stream traffic is 
ON-OFF, non elastic and other traffics are elastic in nature. 
We have found that, in the presence of multiclass traffic, 
neither inter-arrival times nor call holding times are 
exponentially distributed [25], [27]. Therefore, to analyse the 
performance of a wireless network, we'll generalize the arrival 
process by removing the restriction of the exponential inter-

event times. If iX be the time between the thi and the  thi 1  

call arrivals, then  3,2,1,=i|X i
 will represent the 

sequence of independent identically distributed random 
variables and hence the process will constitute a renewal 

process [26]. Here, iX  represents a continuous random 

variable and let us assume that the underlying distribution of 

this renewal process is F(x)  . If kS  represents the time from 

the beginning till the 
thk call arrival, then 

 

k321k X++X+X+X=S         (1) 

and if (t)F (k) denotes the distribution function of kS , clearly, 

(k)F  is the k-fold convolution [20] of F  with itself. For 
notional convenience, we define 
 











 

00,

01,0

<t

t=(t)F )(                      (2) 

 
Our primary objective here is to determine the number of 

calls N(t)  in the interval t)( 0, . N(t)  is a discrete parameter 

called renewal random variable here. Then, the process 
 0t|N(t)  is a discrete-state, continuous-time renewal 

counting process [15]. Now, it can be observed that n=N(t)  

if and only if 
1+nn StS   Then, 

 
 

(t)F(t)F=

tP(St)P(S=

)StP(S=n=N(t)P

)+(n(n)

+nn

+nn

1

1

1






                 (3) 

 

If M(t) be the average number of call arrivals in the 

interval t)( 0, , then 
 

   



 

 





 

 







1

1

0 1

1

0 0

0

1

=n

)+(n

=n =n

)+(n(n)

=n =n

1)+(n(n)

=n

(t)F+F(t)=

(t))F(n(t)nF=

(t)nF(t)nF=

n=N(t)nP=N(t)E=M(t)

    (4) 

 

It can be noted that )+(nF 1  is the convolution [20] of (n)F  

and F . Assuming f be the density function of F , it can be 

written as  
 

 
t

(n))+(n dxf(x)x)(tF=(t)F
0

1                (5)                   

 
Therefore 



 

 



















t

t

=n

(n)

=n

t
(n)

dxf(x)x)M(t+F(t)=

dxf(x)x)(tF+F(t)=

dxx)f(x)(tF+F(t)=M(t)

0

0 1

1 0
    (6) 

 

The rate of average call arrivals m(t)can be defined to be 

the derivative of M(t) , i.e. 
 

dt

dM(t)
=m(t)                           (7) 
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For small h , m(t)h denotes the probability of a call arrival 

in the interval h)+t(t, . Thus for Poisson process, m(t)  

equals the Possion rate λ . To determine m(t) , taking 

Laplace transform [26] on both sides and using convolution 
property of the transform, (7) can be rewritten as  
 

       f(t)Lm(t)L+f(t)L=m(t)L    (8)  
 
Therefore,  

   
 f(t)L

f(t)L
=m(t)L

1
 

 
and 

   
 m(t)L

m(t)L
=f(t)L

1
                      (9)                                 

 

 i.e. if either f(t)  or m(t)  is known, the other can be 

determined. When (t)F (n)  is a Gamma or n-stage Erlang 

distribution [20], then 
 

  λt
n

=k

k
(n) e

k!

t
=(t)F 











 

1

0

1
  

 
and hence from (3) one can write 
 

  1 )n
(n) (n+ ) λt(λ t

P N(t)= n = F (t) F (t) e
n!

         (10)                                     

 

Thus N(t)  has a Poisson distribution [15] with 

parameter λt . 
Now, let us assume that Call holding times are not 

exponential [20] and are independent general random 

variables with common distribution function G . If X(t)  is 

number of calls in the system at time t  and )(tN  is the total 

number of call arrivals in the interval )( 10, . The number of 

departures X(t)N(t)=D(t)  . 

It is known that for 1n  occurred arrivals in the interval 

t)( 0, , the conditional joint pdf of the arrival times 

n32 T,T,T,T 1
 is given by [26] 

 

 
nn32 t

n!
=n=N(t)|t,,t,t,tf 1

            (11) 

 

When a call arrive at time ty 0 , from (11), the time 

of arrival of the call is independently distributed on t)( 0,  i.e.  
 

t<y<,
t

=(y)fY 0
1  

 

The probability that this call is still undergoing service at 

time t  given that it arrived at time y is y)G(t 1 . Then 

the unconditional probability that the call is undergoing 

service at time t  is  
 

 

dx
t

G(x)
=

dy
t

y)G(t
=

dy(y)fy)G(t=p

t

t

Y

t













0

0

0

1

1

1
        (12)                   

 

If n  calls have arrived and each has the probability p  of 

independently not completing by time t , then a sequence of 

n  Bernoulli [26] trials is obtained. Thus, 
 

 










  

otherwise

n=j,p)(pC=n=N(t)|j=X(t)P jnj
j

n

0,

0,1,1
 

 
Then by theorem of total probability [26] 
 

 

 

j!

tp)(λ
e=

j)!(n

p)λt(

j!

tp)(λ
e=

n!

t(λ
ep)(pC=j=X(t)P

j
λtp

j=n

nj
λt

j=n

n
λtjnj

j
n



 














11

)
1

      (13)                   

 
Thus, the number of calls in service in the system at the 

time t  has the Poisson distribution with parameter 
 

  
t

' dxG(x)λ=λtp=λ
0

1                (14) 

 
when call holding times are exponentially distributed with 

parameter μ  then μxe=G(x) 1  

 

 



t μt

μ

e

μ
=dxG(x)

0

1
1  

 
hence, 

αt  , 
μ

λ
=λ'  

 
Now, if the number of channels in a cellular wireless 

network system is C  and the new calls are dropped when all 
channels are busy, then probability of drops can be calculated 
from (13) as 

 

 
C!

tp)(λ
e=C=X(t)P

C
λtp           (15) 
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as a special case, when C is finitely large and call inter arrivals 
and departures are both exponentially distributed, probability 
of drops from (14) for a steady state can be rewritten as  
 

 


C

=i

i

C

i!

ρ
C!

ρ

=C=X(t)P

0

 

 
where the denominator in the right is normalization factor and 

ρ  is traffic intensity μλ / , This is known as Erlang's B 

formula [25]. 

V. CONCLUSION  

In this paper, we analyze the traffic data collected from 
wireless network with multiclass traffic. Our observation 
shows that call inter-arrival time distribution can be best 
modelled by both gamma (Erlang) as well as weibull 
distributions instead of exponential distribution. Incoming 
traffic displays the properties of self-similarity and long-range 
dependency, too. Call holding times distribution can be best 
expressed by lognormal distributions without showing long-
range dependency. The non-Poisson arrivals and non- 
Exponential departure has also been reported in [25], [27]. 
Based on these observations, a model for estimating the 
probability of drops and it is shown that Erlang B formula can 
be derived from this as a special case. Therefore, Erlang B and 
C models, which are mostly used to shape traffic in circuit 
switched networks, does not always give optimum output for 
wireless networks with multiclass traffic, This study may be 
useful for designing next generation wireless networks. 
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