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Spline Collocation for Solving System of Fredholm
and Volterra Integral Equations
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Abstract—In this paper, numerical solution of system of
Fredholm and Volterra integral equations by means of the Spline
collocation method is considered. This approximation reduces the
system of integral equations to an explicit system of algebraic
equations. The solution is collocated by cubic B-spline and the
integrand is approximated by the Newton-Cotes formula. The error
analysis of proposed numerical method is studied theoretically. The
results are compared with the results obtained by other methods to
illustrate the accuracy and the implementation of our method.

Keywords—Convergence analysis, Cubic B-spline, Newton-
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I. INTRODUCTION
CONSIDER the system of integral equations of the form:

F(t) = G(t) + fab K(tx, F(x))dx, t € [a,b] (1)

where
F(O) = [f,(0, &), ... f, O],
G() = [gln(t),gz(t), e 8n (1T,

K(t, X, F(X)) = Z k;; (t, X,f]-(x)),i =1,..,n
=1

In (1) the known kernel K is continuous, the function G(x)
is given, existence and uniqueness of the solution of (1) is
given by [22] and F(x) is the solution to be determined [1],
[2]. We consider the i-th equation of (1):

£ = gi(®) + XLy [ ki (660 dxte [abli=1,..,n(2)

There has been considerable interest in solving integral
equation (1). E. Babolian et al. [13] applied an Adomian
decomposition method for solving system of linear Fredholm
integral equations of the second kind. Numerical solution of
the system of linear Fredholm integral equations (1), has been
proposed by Maleknejad et al. in [14], [15]. Rationalized Haar
functions have been used for direct numerical solutions in [14]
and also Block-Pulse functions to propose solutions for the
system of Fredholm integral equations have been developed in
[15]. This type of equations have been solved in many papers
with different methods such as Taylor’s expansion [16], [17],
operational matrices method [18] homotopy perturbation
method [19]-[22], Sinc collocation method [23], [24] and

N. Ebrahimi is with the School of Mathematics, Islamic Azad University,
Central Tehran Branch, Iran (e-mail:ebrahimi_nehzat@yahoo.com).

J. Rashidinia is with the School of Mathematics, Iran University of Science
& Technology, Narmak, Tehran 16844, Iran (e-mail: rashidinia@jiust.ac.ir).

Adomian’s decomposition method [25]-[28]. Using a global
approximation to the solution of Fredholm and Volterra
integral equation of the second kind is constructed by means
of the cubic spline quadrature in [9]-[12].

In this paper, we use cubic B-spline collocation for
approximation unknown function and use of the Newton-
Cotes rules for approximating integrand.

I1. CUBIC B-SPLINE

We introduce the cubic B-spline space and basis functions
to construct an interpolant Sy = [sy, sy, ..., s,]T, to be used in the
formulation of the cubic B-spline collocation method.

Let m{a=ty <t; <: <ty =Db}, be a uniform partition of
the interval [a,b] with step size h = % .The cubic spline
space is denoted by

Ss(m) = {s € C?[a,b; si|[ti tiss) EPs i =1,..,n,k =0, ...,N},

where P; is the class of cubic polynomials. The construction of
the cubic B-spline interpolate Sy to the analytical solution
F(t) = [f,(0), (D), ..., £,(©]", for (1) can be performed with the
help of the four additional knots such that

t, <ty <tpandty < tysr < tnsz -

Following [9] we can define a cubic B-spline s; (t) of the
form

_ vN+1 3
si(t) = Xe22q ckiBi () 3)
where
(t—typ)?, tE [tez, tia]
h? +3h?(t— ti_y) + 3h(t— t1)® = 3(t—t-1)®,  tE [top bl
BR() = g3) b 430 (s — 0+ 3h(ten — 97 = 3(tus — V% L€ [l
(tisz — 03, t € [tsq, tszl
0, otherwise,

satisfying the following interpolator conditions:
Si(tk):fi(tk)l 1SISH,0SkSN,

and the end conditions

() Si’(to) = fi’(to); Si’(tN) = fi’(tN), i=1,..,n, or
(i)Dls;(ty) = Dls;(ty), j=12,0r
(ii)s;"(te) = 0 ,s;"(ty) = 0. C))
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III. THE COLLOCATION METHOD

A. Nonlinear Fredholm Integral Equation

In the given nonlinear Fredholm integral equation (2), we
can approximate the unknown function by cubic B-spline (3),

si() = i) + Tk, [k (tx509)dx te [ab],i=1,..,n.(5)

We now collocate (5) at collocation points t, = a + kh,h =
% , k=0,1,..,N, and we obtain

si(t) = gilt) + By J kg (% 5(0) dx,i = 1,0,k =0, .., N. (6)

To approximate the integral equation (6), we can use the
Newton-Cotes formula [2], when n is even then the Simpson
rule can be used and when n is multiple of 3, we have to use
the three-eighth rule, then we get the following nonlinear
system:

si(t) = gi(ti) +h Ly 2o wie kg (tk. Xr Sj(Xr)):i =1,..,n,k=0,..,N,

where x, =a+rh,r=0,...,N, we need more equations to
obtain the unique solution for (7). Hence by associating (7)
with (4) for the i-th equation, we have the following nonlinear
system (N + 3) x (N + 3):

si(t) = gi(t) + h I, T wi ki (tk: X, i (Xr)) k=0,..,N

. ‘ , ®)
Dls;(ty) = Dlsi(ty), =12,

where wy . represents the weights for a quadrature rule of
Newton-Cotes type. By solving the above nonlinear system for
each i, we can determine the coefficients in (3), by setting
coefficients in (3), we obtain the approximate solution for (1).

B. Nonlinear Volterra Integral Equation

Now we consider the system of nonlinear Volterra integral
equations

F(9) = G(t) + [, K(tx F())dx, t€ [ab] 9)

the solutions of (9) can be replaced with cubic B-spline and so
we collocate (9) at collocation points t, = a + kh,h = t_Ta , k=
0,1,...,N, and we obtain

{si(tk) =gi(t) + Z}‘ﬂ f:k ki (tk, X, S; (x)) dx,i=1,..,n,k=1, ""N’(IO)
si(to) = gi(to)-

To approximate the integral equation (10), we can use the
Newton- Cotes formula, when n is even then the Simpson rule
can be used and when n is multiple of 3, we have to use the
three-eighth rule, then we get the following nonlinear system:

{Si(tk) =gi(t) +hYL, Ko Wirkij (tk: Xp Sj (Xr)) k=1,.., N'(l 1)
si(to) = gi(to)-

We need more equations to obtain the unique solution for
(11). Hence by associating (11) with (4) for the i-th equation,
we have the following nonlinear system (N + 3) x (N + 3):

si(ty) = gi(t) + thn=1 er\]=o Wk,rki,j (tk, Xp) Sj(Xr)) ,k=1,..,,N,
Disi(ty) = Disi(ty), j=12, (12)
si(to) = gi(to)-

By solving the above nonlinear system for each i, we can
determine the coefficients in (3), by setting coefficients in (3),
we obtain the approximate solution for (9).

IV. ANALYSIS: CONVERGENCE OF THE APPROXIMATE
SOLUTION

In this section, we consider the error analysis of the system
of nonlinear Volterra integral equations of the second kind.

We assume that Sy =[sy,sy,..,s,]T, is approximated
solution for F(t) = [f,(v),,(1),...f,(Y)]". We need to recall the
following definition in [9].

Definition: The most immediate error analysis for spline
approximates s to a given function f defined on an interval
[a, b] follows from the second integral relations.

Iff € C*[a,b], then ||D/ (f — )| < yh*7,j = 0,1,2,3,4, where ||f]l,, =

maXop<i<n SUP;_, <t<t;|f(D) |,

and D/ the j-th derivative.
Theorem: The approximate method

Sn(t) = G(t) +h I Wi K(ti, Xp, Sy (X)) k = 1, ..., N, (13)

for solution of the system of nonlinear Volterra integral (9) is
converge and the error bounded is

[Enil < MWL kEllE [+ ! [E(h, ti)]
NkE =1 — hwL 4 N —hwL Y
=

Proof: We know that at t, =a+kh,h = t_f ,k=01,..N,
the corresponding approximation method for the system of
nonlinear Volterra integral equation (9) is

Sn(ti) = G(ty) + h I¥ o Wy K (b X, Sy (X)) k = 1, .., N. (14)

By discretizing (9) and approximating the integrand by the
Newton- Cotes formula, we obtain

F(t) = G(ty) + h XX g Wi K(ty, X, FX) + E(h, 6), k= 1,...,N, (15)

where

te k
E(h tp) = f K(tk, X, F(x))dx —h Z wk,rl((tk, Xr, F(Xr)).
a r=0

By subtracting (15) from (14) and using interpolatory
conditions of cubic B-spline, we get
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k
S (80 = F(t) = 0 )" Wier[K (b X S (50)) = Ktk e Fx0)] — ECh, .

r=0

We suppose that W = max, x|w.| and Sy(ti) = Sni F(ty) =
F, k=1,..,N, and kernel K satisfies a Lipschitz condition in
its third argument of the form

[K(t %, Sy )- K(t, x, F)| < LISy — Fl,

where L is independent of't, x, Sy and F. We get

k
ISk — Ful < hWLZ(sNr -
r=0

Fol + [E(h, 6.

Then, for sufficiently small h (see [2]), we have

k-
[Enl < hwL EllE [+ . [E(h, ty)]
Nkl =1 hwL y wel T B 801
=

where ENk = SNk_stk: 1, N ,N.

Since by assumption both the quadrature error and the
function approximate error are zero in the limit, it follows
when h - 0, lim max |E(h,ty)| = 0, then the above term is
zero . We get for a fixed k, |[Exg| 2 0 ash - 0.

V.NUMERICAL EXAMPLES

In order to test the applicability of the presented method, we
consider four examples of the system of linear and nonlinear
Volterra and Fredholm integral equations. The absolute errors
in the solution for various values of N are tabulated in tables.
Our numerical solutions are compared with [3]-[8], [19].

Example 1. Consider the system of following linear
Fredholm integral equations with exact solution

(GIGA S (t)gT = (e, E"t)Tll

ettl _ 1
f,(t) = 2et + —f et"‘fl(x)dx—f e(t+2%f, (x)dx,
t+1 0 0

t+1 _

t+1

) =ettets 1o f e, () — f et ().
0 0

This system has been solved by our method with N = 10,
30, 60, the absolute errors at the particular grid points are
tabulated in Table I, and compared with the absolute errors
obtained by [4], [6]. This table verified that our results are
more accurate in comparison with these methods.

Example 2. Consider the system of following linear
Volterra integral equations with exact solution

(f1(0), (©)T = (cost,sint)T,

1
f,(t) = =1+ cost — tcost? _E(_2+t) sint+ cost(1 + sint)

t t
+ f (sin(t — x) — Df;(x)dx + f (1 —xcost)f,(x)dx,
0 0

f,(t) = —t+sint+ ftfl(x)dx + ft(t —x)f,(x)dx.
0 0

This system has been solved by our method with N = 10,
20, 30, the absolute errors at the particular grid points are
tabulated in Table II, and compared with the absolute errors
obtained by [7]. This table verified that our results are more
accurate in comparison with [7].

Example 3. Consider the system of following nonlinear
Fredholm integral equations with exact solution, [8],

(L®, L) = (- 1t3),
-10 11

fi®) = T+E+ j: (txflz(x) + x2f23(x)) dx,

1 1
f@®) = ﬁ+§+ t? +f (xf13(x) — tfzz(x)) dx.

The absolute errors at the particular grid points are
tabulated in Table III. This table verified that our results are
more accurate.

Example 4. Consider the system of following nonlinear
Volterra integral equation with exact solution

(f: (0, f2 (t))tT =07,
) =t—t2+ f (F,(0 + £,(0)dx,
0
t3

tZ
fz(t)=t—E— 3

t
+] (6200 +£))dx.
[ (5760 + £,00) ax
The absolute errors at the particular grid points are
tabulated in Table IV and compared with the absolute errors
obtained by with [3], [5], [19]. This table verified that our
results are more accurate in comparison.

TABLE1
THE ERROR ||E|| IN SOLUTION OF EXAMPLE 1 AT PARTICULAR POINTS

Our method  Our method  Our method  method in method in
N=10 N=30 N =60 [6] [4]
Results f1(x)

0 1.71IE-05 2.11E-07 1.32E-08 1.13E—03 1.2E-03
0.1 1.78E-05 2.19E-07 1.37E-08 1.15SE-03 1.15E-03
02 1.83E-05 2.26E - 07 141E-08 1.19E-03 1.19E-03
03 1.87E-05 231E-07 144E-08 1.29E-03 1.28E-03
04 1.87E-05 2.32E-07 145E—08 144E-03 1.44E-03
0.5 1.84E-05 2.29E - 07 143E-08 1.67E—-03 1.69E—03
0.6 1.77E-05 2.19E - 07 137E-08 1.72E-03 1.70E-03
0.7 1.63E-05 2.02E-07 126E-08 1.77E—-03 1.77E-03
0.8 1.41E-05 1.75E - 07 1.09E-08 1.93E-03 1.93E-03
0.9 1.09E - 05 1.35E-07 846E—-09 2.19E—-03 2.20E-03

1 6.51E - 06 8.01E — 08 S.0lE-09 26lE—02 4.21E-02

Results 2(x)

0 3.73E - 06 4.61E — 08 2.88E—-09 6.70E—04 6.67E — 04
0.1  3.60E - 06 4.45E - 08 278E-09 731E-04 731E-04
02 359E-06 444E-08 277E-09 743E-04 7.43E-04
03 375E-06 4.63E-08 2.80E-09 7.13E-04 7.13E-04
04 4.15E-06 5.13E-08 321E-09 6.60E—04 6.49E-04
0.5 4.87E-06 6.03E — 08 377E-09 5.55E-04 5.55E-04
0.6 6.04E—06 7.47E - 08 467E—-09 S43E-04 544E-04
0.7 7.77E - 06 9.62E - 08 60lE-09 492E-04 492E-04
0.8 1.02E-05 1.26E - 07 792E-09 4.02E—04 4.02E-04
09 1.36E-05 1.68E — 07 1.05E-08 2.78E—-04 2.30E-04

1 1.82E-05 2.22E-07 141E-08 123E-04 1.14E-03
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TABLEII

THE ERROR ||E|] IN SOLUTION OF EXAMPLE 2 AT PARTICULAR POINTS

TABLE IV
THE ERROR ||E|| IN SOLUTION OF EXAMPLE 4 AT PARTICULAR POINTS

" Our method ~ Our method ~ Our method method in " Our method  RungeKutta Adomian Modified HPM method
N=10 N =20 N=30 [7] N=10 method [5]  method [5]  method [3] [19]
Results f1(x) Results f1(x)
0 1.25E - 06 7.78E - 08 1.53E-08 0 0 9.36E - 17 0 0 0
0.1 1.03E-06  6.39E-08 1.26E — 08 1.37E - 04 0.1 5.55E-17 1.82E - 08 0 833E—-04 9.67E-07
02 778E-07 4.83E-08 9.53E-09 9.27E- 04 02 5.55E-16 1.17E - 02 4.0E- 06 1.57 3.0E-05
03 S.01E-07 3.10E-08  6.12E—09 2.67E - 03 03 I1.11IE-16 245E-02 3.80E—-05 3.13E-03 221E-04
04 1.99E-07 1.22E-08  2.41E-09 5.45E - 03 04 1.1IE-16 298E-02 223E-04 797E-02 9.05E-04
0.5 122E-07 7.80E — 09 1.54E-09 9.23E-03 05 222E-16 2.65E-02 890E—-04 890E-02 2.69E-03
0.6 4.61E-07 2.89E - 08 5.72E - 09 1.38E-02 0.6 222E-05 1.07E - 02 277E-03 874E-02 1.37E-03
0.7 8.ISE—-07 5.10E-08 1.01E-08 1.93E-02 0.7 0 2.53E-02 720E-03 7.2E-02 2.61E—-02
08 1.17E-06  7.37E-08 1.45E — 08 2.56E — 02 0.8 5.55E-16 9.72E - 02 1.L65E—02 7.79E—-02 2.93E-02
09 155E-06 9.68E-08 1.91E - 08 3.32E-02 09 333E-16 0.23 340E-02 890E-03 3.60E-02
1 1.92E - 06 1.20E-07 237E-08 4.19E - 02 1 0 0.52 0.13 6.87E— 02
Results f2(x) Results f2(x)
0 1.01IE-06  6.32E—08 1.25E-08 0 0 1.35E- 16 0 0 0
0.1 1.26E-06 7.92E - 08 1.56E - 08 1.52E-04 0.1 833E-17 871E-08 2.10E-06 3.58E—04 4.71E-05
02 152E-06 9.51E-08 1.88E — 08 1.14E - 03 0.2 0 6.22E—-03 6.70E-05 133E-02 7.11E-04
03 1.77E-06 1.11IE-07 2.19E-08 3.71E-03 03 1.66E—16 1.84E-02 5.19E—-04 1.82E—02 3.40E-03
04 2.03E-06 1.26E-07  2.51E—-08 8.57E-03 04 1.IIE-16 2.83E-02 224E-03 137E-02 1.02E-02
0.5 2.28E-06 143E-07  2.82E-08 1.64E - 02 05 222E-16 321E-02 7.03E-03 1.73E-02 2.35E-02
0.6 2.53E-06 1.58E—-07  3.13E-08 2.78E — 02 06 333E-16 2.16E-02 1.78E—-02 9.70E-03 4.61E-02
0.7 2.79E-06 1.74E-07  3.44E-08 4.25E—-02 0.7 222E-16 1.62E - 02 398E-02 1.15E-02 8.08E-02
0.8 3.05SE-06 1.90E-07  3.76E-08 5.91E - 02 08 I1.11E-16 1.07E - 01 7.94E-02 3.09E—02 0.13
09 330E-06 2.06E—08 4.07E-08 7.48E — 02 09 444E-16 0.31 0.15 2.35E-02 0.19
1 3.55E-06  222E-07 438E-08 8.71E-02 1 0 1.75 0.25 9.37E-02 0.29
TABLE III
THE ERROR ||E|| IN SOLUTION OF EXAMPLE 3 AT PARTICULAR POINTS REFERENCES
t N=10 N =30 N =60 [1] Atkinson,K. E: The Numerical Solution of Integral Equations of the
Second Kind, Cambridge University Press, New York, (1997).
Results f1(x) [2] Delves,L. M , Mohammed,J. L: Computational Methods for Integral
0 1.94E - 04 2.44E - 06 1.52E-07 Equations , Cambridge University Press, Cambridge, (1985).
0.1 1.88E-04 237E — 06 1.48E — 07 [3] Saeed,R. K, Ahmed,C. S: Approximate Solution for the System of Non-
B B _ linear Volterra Integral Equations of the Second Kind by using Block-
0.2 182E-04 2.30E - 06 1.44E =07 by-block Method,Australian Journal of Basic and Applied Sciences,
03 1.77E-04 2.23E-06 1.39E - 07 2(1),,114-124(2008).
04 1.71E-04 2.16E — 06 1.35E - 07 [4] Babolian,E , Masouri,Z, Hatamzadeh-Varmazyar,S: A Direct Method
05 1.65E—04 2.09E-06 1.31E-07 for Numerically Solving Integral Equations System Using Orthogonal
06 1.60E— 04 2.02E - 06 1.26E — 07 Triangular Functions, Int. J. Industrial Mathematics.,1(2), 135-
’ ' ' ' 145(2009).
0.7 1.55E-04 1.95E - 06 1.22E-07 [5] Maleknejad,K, Shahrezaee,M: Using RungeKutta method for numerical
0.8 1.49E-04 1.88E-06 1.17E-07 solution of the system of Volterra integral equation, Applied
0.9 1.43E-04 1.81E — 06 1.13E-07 Mathematics and Computation, 149 ,399-410(2004).
1 1.38E — 04 1.74E — 06 1.O9E — 07 [6] Babolian,E , Mordad,M: A numerical method for solving systems of
' ' _ linear and nonlinear integral equations of the second kind by hat basis
Results £2(x) functions,Computers and Mathematics with Applications ,62 ,187-
0 562E-05 7.05E-07 44l1E-08 198(2011).
0.1 528E—05 6.63E — 07 4.15E — 08 [7] Rabbani,M, Maleknejad,K , Aghazadeh,N: Numerical computational
’ ' ' ' solution of the Volterra integral equations system of the second kind by
02 4.94E-05 6.21E-07 3.88E - 08 using an expansion method,Applied Mathematics and Computation ,187,
0.3  4.60E - 05 578E—-07  3.62E—08 1143-1146(2007).
0.4 4.26E-05 536E - 07 3.35E - 08 [8] Bakodah,H. O: Some Modifications of Adomian Decomposition Method
0.5 3.92E—05 4.93E — 07 3.09E — 08 Applied to Nonlinear System of Fredholm Integral Equations of the
’ Ceon e ' Second Kind, Int. J. Contemp. Math. Sciences., 7(19),929 - 942(2012)
0.6 3.58E 05 451E-07 2.82E-08 [9]1 Prenter,P.M: Spline and Variational Methods, Wiley & Sons, New-
0.7 3.25E-05 409E-07 2.56E-08 York, (1975).
0.8 291E-05 3.66E — 07 2.29E - 08 [10] Mahmoodi,Z,Rashidinia ,J, Babolian,E: B-Spline collocation method for
09 257E—05 324E-07 2.03E-08 linear and nonlinear Fredholm and Volterra integro-differential
_ B B equations, Applicable Analysis ,1-16(2012).
! 223E - 05 2.82E ~ 07 1.76E — 08 [11] Rashidinia ,J, Babolian ,E, Mahmoodi,Z : Spline Collocation for
Fredholm Integral Equations, Mathematical Sciences, 5(2),147-
158(2011).
[12] Rashidinia ,J,Babolian,E,Mahmoodi,Z: Spline Collocation for nonlinear
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Modelling&Computations.,1(1) ,69-75(2011).
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