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Abstract—The theoretical approach is developed to describe the 

change of drops in the atmosphere of own steam and buffer gas under 

irradiation. It is shown that the irradiation influences on size of stable 

droplet and on the conditions under which the droplet exists. Under 

irradiation the change of drop becomes more complex: the not 

monotone and periodical change of size of drop becomes possible. 

All possible solutions are represented by means of phase portrait. It is 

found all qualitatively different phase portraits as function of critical 

parameters: rate generation of clusters and substance density. 

 

Keywords—Irradiation, steam, plasma, cluster formation, liquid 

droplets, evolution. 

I. INTRODUCTION 

HE essential property changes in structural materials are 

induced by irradiation [1].  

It was established experimentally that irradiation can 

significantly change the conditions of the phase-structural 

transformations and technological conditions for the 

coexistence of substances that are in different phases. 

Investigation of radiation influence on the conditions for the 

coexistence of disordered substances, including gases and 

liquids is of particular interest in the design of nuclear 

equipment and new-generation reactors, for instance molten-

salt reactors.  

Processes in gases and liquids under irradiation are actively 

studied [2], [3]. However, the kinetics of phase changes in 

gases and liquids under irradiation analyzed insufficient, and 

many aspects are still not been investigated.  

Irradiation changes the properties of the gas and the liquid 

and affects the processes near their interface [4]. Molecules 

are excited, ionized and destructed under irradiations. The 

energy of internal degrees of freedom of the molecules is 

redistributed. The equilibrium velocity distribution and the 

equilibrium structure of short-range ordering of the liquid are 

disturbed. The ionized and excited molecules often react with 

neutral molecules and form stable clusters [5], [6]. 

The substance (primarily the liquid phase, where the 

relaxation passes faster) is heated due to relaxation of the 

radiation-induced excitations. A liquid surface is "spattered" 

by high-energy particles and small droplets can be destroyed 

by irradiation. Generation of surface disturbances, changes in 
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the structure of the liquid surface lead to a change in 

evaporation and absorption of molecules. 

The peculiarity of radiation effects is, first of all, in the 

combination of various mechanisms operating at very different 

time scales. Radiation-induced excitation and ionization of 

molecules lasts about 10
-13 

seconds. An excited molecule can 

transfer energy to an unexcited molecule. Various restructuring 

of excited (ionized) molecules occur within 10
-10

 sec. As a 

rule, restructuring leads to primary damage of molecule and 

radical formation. Active products, such as excited molecules, 

ions and free radicals interact with each other. New radicals 

are generated; molecules are changed; and clusters are formed 

very active. These processes last about 10
-6

 s. 

Characteristic time of variation of the droplet size is 

considerably greater than the characteristic times of each of 

these processes. 

II. STATEMENT OF THE PROBLEM 

Let us consider droplets in atmosphere of own steam under 

irradiation. Let us consider stage of growth of droplet when 

nucleation of new droplets can be neglected, their 

concentration is constant, and they all have approximately the 

same size. Due to irradiation weakly-ionized plasma is 

generated. The clusters of molecules are formed as result of 

the excitation and ionization of molecules of the steam. The 

droplet grows by absorbing both molecules and their clusters. 

Reducing the size of the droplet is due to thermal emission its 

individual molecules. Speed of emission depends on droplet 

radius and temperature. Since cluster formation is much faster 

the change of droplet size, at studying growth of the droplet we 

assume in our model that the formation of the cluster is 

instantaneous. It means that kinetics of cluster formation is not 

studied and we use merely a given number of clusters that are 

generated per unit time under irradiation. Cluster size is 

assumed to be equal and lower than threshold of formation of 

liquid droplets. Life-time of cluster is function of temperature. 

Clusters can diffuse and their diffusion coefficient can be 

distinguished from the one of molecules. 

Let V is volume per one drop. The total number of 

molecules in this volume n0V is constant. It consists of 

molecules of steam (ngV), molecules included in clusters 

(mnV) and in droplets (4πR
3
/3v0). Thus 

 

( ) 0

3

0 34 vNRmnnn g π++=  (1) 

 

Rate of change of the average density of the complexes (n) 

and the droplet radius (R) are described by the equations 
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Here )/2exp( 0 RkTvnn
e

g

eR

g
σ=  and e

g
n  are equilibrium 

densities of molecules near droplet and far away from it. N = 

1/V is number of droplet per volume; m is number of 

molecules in the cluster. K is part of molecules that ionizes 

(excites) per time. τ is life-time of cluster. 0v  is volume per 

molecule in droplet, gD  and cD are diffusion coefficients of 

stream molecules and clusters. 

A theoretical approach to evolution of complex density and 

the droplet radius is developed via formalism of Poincare. Our 

goal is to identify all possible quality different solutions of 

system (1), (2) for different conditions and to build 

corresponding phase portraits. 

Due to conservation of the total number of molecules the 

variables are limited and satisfy the following inequalities: 

0/0 ≥≥ nmn . The equalities are reached when all molecules 

are included in clusters and when there are no clusters. 

0)4/3( 31

00 ≥≥ RNnv π . The equalities are reached when all 

molecules are included in droplets and when there are no 

droplets. 

Let us introduce new variables: e

ggc nDnmDx /= , 
0/ rRy = , 

τ/tt =′  and new parameters: 31

0 )3/4(
−

= Nr π , 

kTrvy 000 /2σ= , e

gnnx /00 = , 
cg DD /=µ , e

gnv0/1=ξ , 

2

0/3 rDcτα = , µτβ /mK= , ξαµξτγ 3/ 2

0 == rDg
. 

Then system of (2), (3) transform into 
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and variables must satisfy inequalities 

 

03

0 ≥≥− xyx µξ  (6) 

 

The changes of the droplet radius (y) and density of clusters 

(x) are completely determined by (4), (5) and by the values of 

the droplet size and the density of clusters in the initial time. A 

set of initial conditions defines a family of solutions, one for 

each choice of the initial condition. This family can be divided 

into classes of qualitatively different solutions. Every class 

includes qualitatively similar solutions. Solutions belonging to 

different classes are qualitatively different. A clear and 

adequate representation of such a partition into classes is given 

by the phase portrait. The purpose of this paper is not to find 

explicit solutions but to give an exhaustive description of all 

solution classes and the change of the partition into classes 

with the change of control parameters. We use as control 

parameters β and x0. The first control parameter is related to 

the rate of radiation-induced generation of clusters, the second 

one is related with the total amount of molecules in the 

considered volume. 

III. ISOCLINES AND STATIONARY SOLUTIONS 

Structure of the phase portrait is determined by critical 

points (stationary solutions) of systems (4), (5) and by their 

topological type. The critical points are intersection of dx=0 

and dy=0 isoclines. The first isocline is  

 

( )
( )

y

yx
yXx I

αβµ

ξβ

++

−
≡=

1

3
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At each point of this isocline the tangent to the phase 

trajectories are parallel to the y-axis (dx = 0).  

The second isocline is 
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exp 0
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  (8) 

 

At each point of this isocline the tangent to the phase 

trajectories are parallel to the x-axis (dy = 0). 

Function (7) decreases monotonically from ( )βµβ += 10xx  

at y=0 to zero at ( ) 31

0 ξxy = . The function (8) has a single 

extremum and vertical asymptote x=0. The form of the 

isoclines shows that the isoclines intersect either one or two 

times, or isoclines do not intersect. 

In order to determine the region of parameters for which 

there are stationary solutions, find the bifurcation point and the 

topological type of the critical points, we exclude x from (7) 

and (8) and represent one of the control parameters as a 

function of y 
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where 

( ) ( )yyyxxyD 0

3

00 exp; µξ −−= , 

( ) ( )yyyxxyZ 0

3

00 exp; −−= ξ .  

Zeros of the function B(y) satisfy equation ( ) 0; 0 =xyZ . 

Asymptotes of B(y) are defined by equation ( ) 0; 0 =xyD .  
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Fig. 1. Positive branch of function В(у) (for different values of х0 (The thick solid line ): 1 - ( )D y ; 2 - ( )Z y ;. 1µ > . 

 

For µ>1 the function B(y) has the only maximum and for 

µ<1 it has the only minimum. Let us consider a family of 

functions B(y), which is born by change of the second critical 

parameter x0. By 
*

1y  and 
*

1

*

2 yy ≥  denote the roots of equation 

( ) 0; 0 =xyZ ; by 
**

1y  and 
**

1

**

2 yy ≥  denote the roots of 

equation ( ) 0; 0 =xyD . By definition, put 

( )*

0

3**

0
exp yyyx += ξ  and ( )**

0

3****

0
exp yyyx += ξ  where 

*
y  is position of maximum of function ( )0; xyZ  and 

**
y  is 

position of maximum of function ( )0; xyD . The values 
*

y  and 

**
y  satisfy equations ( )*

02*

02* exp3 yy
y

y
y =ξ  and 

( )**

02**

02** exp3 yy
y

y
y µξ = ; thus they do not depend on x0. 

Let us consider cases µ>1 and µ<1 separately: 

If µ>1, then ( )0; xyD < ( )0; xyZ , *** yy > , **

0

*

0 xx < . For 

**

00 xx <  the function B(y) is positive hence there exist no 

stationary solutions of the system for any β. A unique root of 

the function B(y) arises at *

00 xx = . It is equal to 
*y  if β=0 

(Fig. 1 (a)). With growing x0 the root falls into two roots, 

which are 
*

1y  and 
*

1

*

2 yy ≥ . The function B(y) is positive when 

*

1

*

2 yyy >>  (Fig. 1 (b)). Now, when 
**

00

*

0 xxx <<  and 

maxββ < , there exist two stationary solution of system (4), 

(5): 1y  and 12 yy ≥ , 
*

112

*

2 yyyy >>> , which coincide at 

maxββ = . And there are no stationary solution if maxββ > . 

Here maxβ  is maximum value of positive branch of function 

B(y). Here and further we find the stationary value of х using 

(7) or (8). 

When value of x0 grows, maximum of function shifts to 

right and up. At 
**

00 xx =  vertical asymptote of function B(y) 

arises at point 
**y  thus two stationary solutions, y1 and y2 take 

place for any value of 0≥β  and *

22

**

1

*

1 yyyyy ≤≤≤≤  

(Fig. 1 (c)). If **

00 xx > , the asymptote divides into two 

vertical asymptote at points 
**

1y  and 
**

2y . Thus two stationary 

solutions, y1 and y2 take place for any value of 0≥β  and 

*

22

**

2

****

11

*

1 yyyyyyy ≤≤≤≤≤≤  (Fig. 1 (d)). 

If µ<1, then ( )0; xyD > ( )0; xyZ , 
*** yy < , 

**

0

*

0 xx >  (value 

of *

0x  does not change, value of **

0x  decreases). For **

00 xx <  

function B(y) is negative thus there are no stationary solution 

of system (4), (5) for any β . At 
**

00 xx =  vertical asymptote of 

function B(y) arises at point 
**y  and two stationary coincident 

solutions, 2

**

1 yyy ==  arise as β tends to infinity ( ∞→β ). 

With increasing x0 (
**

00 xx > ) the asymptote divides into two 

vertical asymptote at points 
**

1y  and 
**

2y . The function B(y) is 

positive between the asymptotes. Thus the system (4), (5) has 

two stationary solutions, y1 and y2 (
**

221

**

1 yyyy ≤≤≤ ) for 

maxββ > . They coincide if maxββ = . If maxββ < , there is no 

stationary solution. Here maxβ  is minimum of the positive 

branch of function B(y). With increasing x0 the minimum of 

function B(y) shifts to right and down. At *

00 xx =  the 

minimum of function B(y) touches x-axis at point 
*y  thus two 

stationary solutions, y1 and y2 take place for any 0≥β , and 

**

22

*

1

**

1 yyyyy ≤≤≤≤ . With increasing 
*

00 xx >  the region 

in which function B(y) is positive divides into two ones. The 

only stationary solution takes place in each region if 0≥β , 

**

22

*

2

**

11

**

1 yyyyyyy ≤≤≤≤≤≤ . 

The stationary solution y1 is unstable saddle point. The 

stationary solution y2 is stable. It can be stable node or spiral.  

y2
** 

B
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IV. RESULTS AND DISCUSSION  

Obtained results allow to describe conditions existence of 

stable liquid droplets in atmosphere of own stream under 

irradiation and to find dependence of droplet size on 

parameters β, x0, and µ, namely on substance density, intensity 

of irradiation, and on the ratio of the diffusion coefficients of 

free molecules and clusters.  

Without irradiation clusters are not form (β=0) and their 

concentration is equals to zero (n=0). State of the system is 

determined by density of substance (given temperature is 

constant). If the value of x0 is less critical one, the droplets 

evaporate. If the value of x0 is more critical one, there exist 

two stationary droplets: stable (large) and unstable (small). If 

initial droplets are smaller than small stationary ones, they 

evaporate. If initial droplets are more than small stationary 

one, their size tends to large stationary size. If the value of x0 is 

equal to critical one, there exists bifurcation of stationary 

solutions: they coincide and vanish with decreasing density of 

substance, x0.  

A state of the system under irradiation is determined by the 

rate of cluster generation and substantially depends on the 

ratio of the diffusion coefficients of free molecules and 

clusters. It can be different [6]. 

When diffusion coefficient of clusters is less than the one of 

free molecules, then region of parameters, under which stable 

droplets exist, shrink. At a low density of substance but 

sufficient for the existence of a stationary droplets, stationary 

droplet size decreases to "critical", coincides with it and 

disappears with increasing the cluster generation rate. If 

density substance grows, the "critical" and the stationary radii 

converge to a certain limiting value, which increasing with 

growth of substance density. This is happen because during 

formation of the clusters with low mobility the substance flux 

to the droplet decreases. 

If diffusion coefficient of clusters is more than the one of 

free molecules, then region of parameters, under which stable 

droplets exist, expand. And there can be oscillations of size 

droplet near the stationary value. 

If diffusion coefficient of clusters is more than the one of 

free molecules, then region of parameters, under which stable 

droplets exist, expands. There can be oscillations of size 

droplet near the stationary value.  

V. CONCLUSION 

Irradiation has effect on existence conditions of stable 

droplets and on their size. Droplets can exist only if the density 

of substance exceeds the “critical” value. If the clusters are 

less mobile than the free molecules of steam, the region of 

existence of droplets shrinks. Otherwise, the region of 

existence of droplets expands under irradiation. 
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