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Diameter of Zero Divisor Graphs of Finite Direct
Product of Lattices

Abstract—In this paper, we verify the diameter of zero divisor
graphs with respect to direct product.

Keywords—Atomic lattice, complement of graph, diameter, direct
product of lattices, 0-distributive lattice, girth, product of graphs,
prime ideal, zero divisor graph.

I. INTRODUCTION

THE study of zero divisor graphs was initiated by Istvan
Beck [5] in 1988. He proposed a method for coloring a

commutative ring by associating the ring to a simple graph,
the vertices of which were defined to be the elements of the
ring, with vertices x and y joined by an edge when xy = 0.
In 1999, Anderson and Livingston [3] changed this definition,
restricting the set of vertices to the non-zero zero divisors
of the ring. Afterwards, the research work was taken up for
non-commutative rings by Redmond [18], while DeMeyer,
McKenzie, and Schneider [6] looked at the zero-divisor graphs
of commutative semigroups with 0. Nimbhorkar, Wasadikar
and DeMeyer [17] introduced the zero divisor graphs of meet
semi-lattices with 0 and proved a form of Beck’s Conjecture.
They associated a zero divisor graph to a meet semi-lattice L
with 0, whose vertices are the elements of L and two distinct
elements x, y ∈ L are adjacent if and only if x ∧ y = 0.

This work was further extended by Halaš and Jukl [8] to
posets with 0 (see also,[9]). Halaš and Jukl [8] introduced the
concept of zero divisor graph to posets with 0, where vertex
set of the zero divisor graph G(P ) is the poset P and two
vertices x and y are adjacent if and only if 0 is the only
element below both x and y. There are many authors working
in this area, see Alizadeh, et. al., [1], [2], Estaji [7], Joshi, et.
al., [10], [11], [12], [13], [14], [15].

The zero divisor graph with respect to an ideal was first
defined in the context of commutative rings by Redmond [18].
In [10], Joshi introduced a similar graph in the context of
posets, which coincides with the definition of zero divisor
graphs given by Lu and Wu [16].

The concept of a zero divisor graph of a poset P with
respect to an ideal I is due to Joshi [10]. We consider this
definition when P is a lattice.

Definition 1: Let I be an ideal of a lattice L with 0. We
associate an undirected graph, called the zero divisor graph of
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L with respect to the ideal I , denoted by GI(L) in which the
set of vertices is V (GI(L)) = {x /∈ I |x ∧ y ∈ I for some
y /∈ I} = ZI(L)

∗ and two distinct vertices x, y are adjacent if
and only if x ∧ y ∈ I . When I = {0} then the corresponding
zero divisor graph is denoted by G{0}(L).

We recall the following concepts from graph theory, see D.
B. West [20].
Definition 2: Let G be a graph. Let x, y be distinct vertices
in G. We denote by d(x, y) the length of a shortest path from
x to y (if it exists) and put d(x, y) = ∞ otherwise we write
d(x, x) = 0 for x ∈ V (G). The diameter of G is denoted by
diam(G), diam(G) = sup{d(x, y) | x, y ∈ V (G). A cycle
in a graph G is a path that begins and ends at the same vertex.
The girth of G, denoted gr(G), is the length of a shortest
cycle in G (and gr(G) = ∞ if G has no cycle).

In fact, in Section II, it is proved that the diameter and
girth of the zero divisor graph of direct product of lattices
with respect to different ideals is always 3. An immediate
consequence of this result is diameter and girth of a Boolean
lattice 2n (for n ≥ 3) is 3. In Section III, we give a sufficient
condition for connectedness of the complement of the zero
divisor graph of a lattice.

II. DIAMETER OF ZERO DIVISOR GRAPHS OF FINITE
DIRECT PRODUCT OF LATTICES

The diameter of a zero divisor graph for finite direct product
of commutative rings was studied by Atani and Kohan [4]. In
this section we study the diameter of zero divisor graphs of
finite direct product of lattices.

Throughout this paper, we assume that all lattices have
the smallest element 0.

Definition 3: The product of graphs G1 = (V1, E1) and
G2 = (V2, E2) is showing by G1 × G2 and is defined as
following:
Consider any two points u = (u1, u2) and v = (v1, v2)
in V = V1 × V2. Then u and v are adjacent in G1 × G2

whenever [u1 = v1 and u2 is adjacent to v2] or [u2 =
v2 and u1 is adjacent to v1]. The following Fig. 1, illustrates
the product of two graphs.

�

�

� �

�

� �

�

� �

�u1

v1

G1

u2 v2 w2

G2

(u1, u2)

(v1, u2)

(u1, v2)

(v1, v2)

(u1, w2)

(v1, w2)

Fig. 1. The product of two graphs
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Definition 4: Let L and K be lattices. Define ∧ and ∨ in
L×K component-wise:

< a0, b0 > ∧ < a1, b1 > = < a0 ∧ a1, b0 ∧ b1 >
< a0, b0 > ∨ < a1, b1 > = < a0 ∨ a1, b0 ∨ b1 >

This makes L×K into a lattice, called the direct product of
L and K. As an example see the following Fig. 2.
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Fig. 2. The direct product N5 × C2

Remark 1: Let L1 and L2 be two lattices. Let G(0,0)(L1 ×
L2) be the zero divisor graph of product of lattices L =
L1×L2 with respect to the ideal I = (0, 0). Now we give the
set of vertices (edges) of G(0,0)(L1×L2) in terms of vertex set
(edge set) of G{0}(L1) and G{0}(L2) respectively. The set of

vertices of G(0,0)(L1×L2) is V (G(0,0)(L1×L2)) =

{
(a, b) �=

(0, 0) | a ∈ V (G{0}(L1)) ∪ {0} or b ∈ V (G{0}(L2)) ∪ {0}
}

and two distinct vertices (a, b) and (x, y) are adjacent (e =
((a, b), (x, y)) ∈ E(G(0,0)(L))) if and only if one of the
following conditions hold:

either e ∈ G{0}(L1)×G{0}(L2);
or a = 0, x = 0 and (b, y) ∈ E(G{0}(L2));
or b = 0, y = 0 and (a, x) ∈ E(G{0}(L1));
or a = 0, x �= 0, b �= 0, y = 0;
or a �= 0, x = 0, b = 0, y �= 0.
Definition 5: A non-empty subset I of a lattice L is an

ideal of L if a, b ∈ I and c ∈ L with c ≤ a implies c ∈ I
and a ∨ b ∈ I . An ideal I �= L is a prime ideal if a ∧ b ∈ I
implies either a ∈ I or b ∈ I .

The following theorem is essentially due to Joshi [10].
Theorem 1: Let I be an ideal of a lattice L. Then GI(L)
is a connected graph diam(GI(L)) ≤ 3.

Lemma 1: Let L1, L2, ..., Ln be lattices with ideals
I1, I2, ..., In, respectively. Then I = I1 × I2 × ...× In forms
an ideal in L = L1 × L2 × ...× Ln.

Proof: Easy to prove.
Remark 2: Note that if one of Ij’s, j ∈ {1, 2, ..., n} is not

prime, then I = I1 × I2 × ...× In is not prime.
Lemma 2: Let L1 and L2 be two lattices with I2, a non-

prime ideal, then diam(GL1×I2(L1×L2)) = diam(GI2(L2)).
Proof: Suppose diam(GL1×I2(L1 × L2)) = n >

diam(GI2(L2)). Then n = 2 or n = 3. Let
(a0, x0), (a1, x1), ..., (an, xn) ∈ ZL1×I2(L1 × L2)

∗ be such
that (a0, x0) − (a1, x1) − ... − (an, xn) is a minimal path.
This implies that ai ∧ ai+1 ∈ L1 and xi ∧ xi+1 ∈ I1 for
i ∈ {0, 1, ..., n− 1}. Hence we have a path x0 −x1 − ...−xn

in GI2(L2). Since n > diam(GI2(L2)), x0 − x1 − ...− xn is
not a minimal path.

This can happen in two ways.
If there exist i, j such that 0 ≤ i < j ≤ n, j �=

i + 1 and xi − xj , then (ai, xi) − (aj , xj), a contradiction
to (a0, x0) − (a1, x1) − ... − (an, xn) is a minimal path.
So diam(GL1×I2(L1 × L2)) ≤ diam(GI2(L2)). Suppose
diam(GL1×I2(L1 × L2)) = n < diam(GI2(L2)) such that
1 ≤ n � 3. Then there exist x0, x1, .., xn ∈ ZI2(L2)

∗ such
that x0 − x1 − ... − xn+1 is a minimal path. Since L1 = I1,
∀a0, a1, ..., an+1 ∈ L1, (a0, x0) − (a1, x1) − ... − (an, xn) −
(an+1, xn+1) is a minimal path of length n+1, a contradiction.

Thus diam(GL1×I2(L1 × L2)) = diam(GI2(L2)).
Definition 6: Let I be an ideal of a lattice L. We define the

set ZI(L)
∗ = {r �∈ I | r ∧ a ∈ I for some a /∈ I}. Clearly,

ZI(L) = ZI(L)
∗ ∪ I .

Lemma 3: Let L1, L2, ..., Ln−1 and Ln be lattices with
ideals I1, I2, ..., In respectively such that ZIi(Li)

∗ �= ∅ for
∀i and let L = L1 × L2 × L3 × ... × Ln (n ≥ 2) and I =
I1×I2×I3×...×In (n ≥ 2). Then diam(GI1×I2×...×In(L1×
L2 × ...× Ln)) > 1.

Proof: Let x1 ∈ ZI1(L1)
∗ and y1 ∈ ZI2(L2)

∗.
So there exist x2 ∈ L1\I1 and y2 ∈ L2\I2 such
that x1 ∧ x2 ∈ I1 and y1 ∧ y2 ∈ I2. Consider,
(x1, y1, 0, ..., 0), (0, y1, 0, ..., 0) ∈ L1 × L2 × ... × Ln.
It is easy to see that (x1, y1, 0, ..., 0), (0, y1, 0, ..., 0) ∈
V (GI1×I2×....×In(L1 × L2 × ... × Ln)). Since
(x1, y1, 0, ..., 0), (0, y1, 0, ..., 0) are not adjacent,
diam(GI1×I2×...×In(L1 × L2 × ...× Ln)) > 1.

Theorem 2: Let L1, L2, ..., Ln−1 and Ln be lattices with
ideals I1, I2, ..., In respectively, such that at least two of them
are non-prime. Let L = L1 ×L2 ×L3 × ...×Ln (n ≥ 2) and
I = I1× I2× I3× ...× In (n ≥ 2). If diam(GI(L)) = 2 then
Li − ZIi(Li) = ∅ for some i ∈ {1, 2, ..., n}.

Proof: Since at least two of the ideals I1, I2, ..., In are
non-prime, we have I is non-prime. This gives ZI(L)

∗ �= ∅.
Assume that diam(GI(L)) = 2. We claim that Li−ZIi(Li) =
∅ for some i ∈ {1, 2, ..., n}. Suppose on the contrary that
Li−ZIi(Li) �= ∅, ∀i. Then there must exist xi ∈ Li−ZIi(Li)
for each i ∈ {1, 2, ..., n}. Without loss of generality, let I1
and I2 be two non-prime ideals. Then zj ∈ ZIj (Lj)

∗ for
j ∈ {1, 2}. So there is an element z′j of ZIj (Lj)

∗ such that
zj ∧ z′j ∈ Ij for j ∈ {1, 2}. If a = (z1, x2, x3, ..., xn) and
b = (x1, z2, x3, ..., xn) then a ∧ a′ ∈ I and b ∧ b′ ∈ I where
a′ = (z′1, 0, ..., 0) and b′ = (0, z′2, 0, ..., 0). So a, b ∈ ZI(L)

∗.
Clearly, a ∧ b /∈ I . Since diam(GI(L)) = 2, there must be
some c = (c1, c2, ..., cn) ∈ ZI(L)

∗ such that a ∧ c, b ∧ c ∈ I .
But a∧ c = (z1∧ c1, x2∧ c2, ..., xn∧ cn) ∈ I , i.e, z1∧ c1 ∈ I1
and xi ∧ ci ∈ Ii for i ∈ {2, 3, ..., n} but xi ∈ Li − ZIi(Li).
Hence xi /∈ Ii. This together with xi ∧ ci ∈ Ii gives ci ∈ Ii
for i ∈ {2, 3, ..., n}. (1)

Similarly, b∧c ∈ I , but b∧c = (x1∧c1, z2∧c2, ..., xn∧cn) ∈
I , i.e, z2 ∧ c2 ∈ I2 and xi ∧ ci ∈ Ii for i ∈ {1, 3, ..., n}
but xi ∈ Li − ZIi(Li). Therefore we must have ci ∈ Ii for
i ∈ {1, 3, ..., n}. (2)

From (1) and (2) we get c = (c1, c2, ..., cn) ∈ I , a
contradiction to the fact that c /∈ I . Thus Li = ZIi(Li) for
some i ∈ {1, 2, ..., n}.
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Remark 3: We provide an example of a lattice L such that
L = ZI(L) for an ideal I of L. Consider the lattice of all
proper subsets of N, the set of all natural numbers under set
inclusion. Then it is easy to observe that L = Z{∅}(L).

In view of Theorem 2, it is clear that

diam(G{0}(L1 × L2 × ... × Ln)) = 3 whenever Li’s are
finite for every i.

Corollary 1: If Li−ZIi(Li) �= ∅ for every i ∈ {1, 2, ..., n},
then diam(GI(L)) = 3. In particular diam(G{0}(L)) = 3 for
L = 2n, a Boolean lattice, for n ≥ 3.

Proof: It is easy to observe that diameter of the zero
divisor graph of L = 23 is 3. Hence the result follows from
Theorem 1, Lemma 3 and Theorem 2.

Theorem 4: Let L1, L2, ..., Ln−1 and Ln be lattices with
ideals I1, I2, ..., In respectively, such that at least two of them
are non-prime. Let L = L1 ×L2 ×L3 × ...×Ln (n ≥ 2) and
I = I1 × I2 × I3 × ... × In (n ≥ 2). If diam(GI1(L1)) =
diam(GI2(L2)) = ... = diam(GIn(Ln)) = 3 Then
diam(GI(L)) = 3.

Proof: Since for each i ∈ {1, 2, .., n}, diam(GIi(Li)) =
3, there exist non adjacent vertices xi, yi ∈ ZIi(Li)

∗ such
that there is no zi ∈ ZIi(Li)

∗ with xi ∧ zi, yi ∧ zi ∈ Ii.
Consider x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn). For
each i ∈ {1, 2, ..., n}, there are elements x′

i, y
′
i ∈ ZIi(Li)

∗

such that xi ∧ x′
i ∈ Ii and yi ∧ y′i ∈ Ii, so x, y ∈ ZI(L)

∗. As
x ∧ y /∈ I and diam(GI(L)) �= 1, therefore diam(GI(L)) =
2 or 3. If diam(GI(L)) = 2, then there exist an element
a = (a1, a2, ..., an) ∈ ZI(L)

∗ such that we have a path x −
a − y in GI(L). Therefore, we have xi ∧ ai, yi ∧ ai ∈ Ii.
Hence d(xi, yi) = 2, which is a contradiction to the fact that
diam(GIi(Li)) = 3. So diam(GI(L)) = 3.

Theorem 5: Let L1, L2, ..., Ln−1 and Ln be lattices with
ideals I1, I2, ..., In respectively, such that at least two of them
are non-prime. Let L = L1 ×L2 ×L3 × ...×Ln (n ≥ 2) and
I = I1 × I2 × I3 × ...× In (n ≥ 2). Then GI(L) has a cycle
of length 3. Hence gr(GI(L)) = 3.

Proof: Take non-zero elements a = (a1, 0, ..., 0), b =
(0, b2, 0, ..., 0) and c = (0, 0, c3, 0, ..., 0) of a lattice L. Clearly,
a, b, c ∈ V (GI(L)) and a ∧ b, a ∧ c, b ∧ c ∈ I . Therefore, we
get a cycle a− b− c− a, hence the girth is 3.

Lemma 4: Let L1, L2, ..., Ln−1 and Ln be lattices with
ideals I1, I2, ..., In respectively, such that at least two of them
are non-prime. Let L = L1 ×L2 ×L3 × ...×Ln (n ≥ 2) and
I = I1 × I2 × I3 × ... × In (n ≥ 2). If a is a cut vertex of
GI(L), then there exists some ai �= 0; (1 ≤ i ≤ n) such that
a = (0, 0, ..., ai, ...0).

Proof: Let a be a cut vertex of GI(L), with a =
(a1, a2, ..., ai, ...an) where ai ∈ Li. Since a is a cut vertex,
for any two arbitrary elements b, c ∈ V (GI(L)), the path
between b and c goes through of a. Consider the element
d = (0, 0, ..., ai, 0, ..., 0). Then we get a path b− d− c. Since
a is a cut vertex, we have a = d. Then a = (0, 0, ..., ai, ...0).

III. COMPLEMENT OF ZERO DIVISOR GRAPHS OF DIRECT
PRODUCT OF LATTICES

The complement of the zero divisor graph of a lattice was
studied by Joshi and Khiste [11].

In this section, we study the connectivity of the complement
of zero divisor graphs of direct product of lattices.

Definition 7: Let G = (V,E) be a simple graph. The
complement of G, denoted by Gc, is defined by setting
V (Gc) = V (G) = V and two distinct vertices u, v ∈ V are
joined by an edge in Gc if and only if there exists no edge in
G joining u and v.

We give examples of two lattices L1 and L2 such that
(G{0}(Li))

c, the complement of the zero divisor graph of a
lattice Li (i = 1, 2) is disconnected and connected respec-
tively.

� � � �

G{0}(L1) (G{0}(L1))
c

a b a b
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a b

1
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0

Fig. 3. Connected zero divisor graph whose complement
is disconnected
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Fig. 4. Zero divisor graph and its complement
both are connected

From Fig. 3, it is clear that G{0}(L1) is connected but not
(G{0}(L1))

c whereas in Fig. 4, G{0}(L2) and (G{0}(L2))
c

both are connected. Hence it is natural to ask the following
question.

Question: When (GI(L))
c is connected ?

We answer this question in the Theorem 5. To prove this
theorem, we need the following results in sequel and the proof
of Theorem 5 is mentioned at the end of this section.

We use the notation, 0 = (0, 0, ..., 0).
Lemma 5: Let L = L1 × L2 × ... × Ln. If (G{0}(L))c is

connected, then diam(G{0}(L))c ≥ 2.
Proof: Let a = (a1, a2, ..., an), b = (b1, b2, ..., bn) ∈

Z{0}(L)∗ be two distinct elements. By Theorem 1, G{0}(L)
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is connected; hence there exists c = (c1, c2, ..., cn) ∈
Z{0}(L)∗ such that c ∧ a = 0. Hence, if (G{0}(L))c

is connected, then d(a, c) ≥ 2 in (G{0}(L))c and so
diam(G{0}(L))c ≥ 2.

Definition 8: A lattice L with 0 is said to be 0-distributive
if a∧b = 0 and a∧c = 0 imply a∧(b∨c) = 0 for a, b, c ∈ L,
see Varlet [19].

A lattice L with 1 is said to be 1-distributive if a ∨ b = 1
and a ∨ c = 1 imply a ∨ (b ∧ c) = 1 for a, b, c ∈ L.

A bounded lattice which is both 0-distributive and
1-distributive is called 0-1-distributive lattice.

Lemma 6: Let L1, L2 be 1-distributive lattices. Then direct
product of L1 and L2 is also a 1-distributive lattice.

Proof: Let L1 and L2 be 1-distributive lattices. To show
that L = L1×L2 is 1-distributive lattice, it is enough to show
that if (x1, y1) ∨ (x2, y2) = (1, 1) and (x1, y1) ∨ (x3, y3) =
(1, 1) then (x1, y1) ∨ ((x2, y2) ∧ (x3, y3)) = (1, 1) for any
xi ∈ L1 and yi ∈ L2 where i ∈ {1, 2, 3}. From the hypothesis
we can conclude that (x1∨x2, y1∨y2) = (1, 1) = (x1∨x3, y1∨
y3), i.e, x1∨x2 = x1∨x3 = 1 and y1∨y2 = y1∨y3 = 1. Since
L1 and L2 are 1-distributive lattices, we have x1∨(x2∧x3) = 1
and y1 ∨ (y2 ∧ y3) = 1.

Therefore (x1, y1)∨ ((x2, y2)∧ (x3, y3)) = (x1, y1)∨ (x2∧
x3, y2 ∧ y3) = (x1 ∨ (x2 ∧ x3), y1 ∨ (y2 ∧ y3)) = (1, 1).

Lemma 7: Let L1, L2, ..., Ln be 1-distributive lattices. Then
L = L1 × L2 × ...× Ln is also a 1-distributive lattice.

Proof: Follows by using mathematical induction.
Corollary 2: Let L1, L2, ..., Ln be 0-distributive lattices.

Then L = L1 × L2 × ...× Ln is also 0-distributive lattice.
Definition 9: A bounded lattice L is complemented if, for

each element x, there exists at least one element y such that
x ∧ y = 0 and x ∨ y = 1. In a lattice L with 0, an element y
is called a semi-complement of x if x ∧ y = 0; and L is said
to be semi-complemented(SC) if each x ∈ L (with x �= 1, if
1 exists in L)admits at least one non zero semi-complement.

Definition 10: A lattice L is called atomic if L has 0 and,
for every ( �= 0)a ∈ L, there is an atom p ≤ a. A lattice L is
called co-atomic if L has 1 and, for every ( �= 1)a ∈ L, there
is a co-atom q ≥ a.

Lemma 8: Let L1, L2, ..., Ln be semi-complemented
lattices. Then L = L1 × L2 × ... × Ln is also semi-

complemented lattice.
Proof: By mathematical induction.

The following lemma is essentially due to Joshi and Mund-
lik [12].

Lemma 9: Let L be a co-atomic lattice with the greatest
element 1. Then the following are equivalent.

(a) L is a 1-distributive lattice.
(b) (q] is a prime ideal of L for every co-atom q ∈ L.
Lemma 10: Let L1, L2, L3, ..., Ln (n ≥ 3) be co-atomic,

1-distributive lattices. Then L = L1 ×L2 ×L3...×Ln has at
least three prime ideals.

Proof: By applying Lemma 7, the finite
direct product of 1-distributive lattices is again
a 1-distributive lattice. We consider the elements
(q1, 1, ..., 1), (1, q2, 1, ..., 1), (1, 1, q3, 1, ..., 1) in
L = L1 ×L2 ×L3...×Ln, where qi are co-atoms of Li. It is
easy to see that (q1, 1, ..., 1), (1, q2, 1, 1, ..., 1), (1, 1, q3, 1..., 1)

are co-atoms of L. By applying Lemma 9, we get at least
three prime ideals in L.

Now, we close this section by proving Theorem 5.
Theorem 5: Let L1, L2, L3, ..., Ln (n ≥ 3) be co-atomic,

1-distributive semi-complemented lattices and L = L1×L2×
L3 × ...× Ln. Then (G{0}(L))c is connected.

Proof: We claim that there exist x, y ∈ V ((G{0}(L))c)
such that x ∧ y = 0, where x = (x1, x2, ..., xn),
y = (y1, y2, ..., yn). If x ∧ y �= 0 for any x, y ∈
V ((G{0}(L))c), then diam((G{0}(L))c) = 1, a contradiction
to diam((G{0}(L))c) ≥ 2, by Lemma 5. Thus x and y are not
adjacent in (G{0}(L))c. By Lemma 10, at least three prime
ideals, say (q1], (q2], (q3] do exist, where qi are co-atoms of
L of the form q1 = (d1, 1, 1, ..., 1), q2 = (1, d2, 1, ..., 1) and
q3 = (1, 1, d3, 1, ..., 1) where di are co-atoms of Li.
Let x and y be two non-adjacent vertices. We have the
following cases:

(Case I) If x, y ∈ (q1], then x∧q1 = x �= 0 and y∧q1 = y �=
0. Since Li’s are semi-complemented, it is easy to observe that
L is also semi-complemented. Then every non zero element
is in Z{0}(L)∗. Hence q1 ∈ V (G{0}(L))c. Hence there is a
path x− q1 − y in (G{0}(L))c.

(Case II) If x ∈ (q1] and y ∈ (q2]. Since x ∧ y = 0 ∈ (q3]
and (q3] is a prime ideal, at least one of x or y ∈ (q3]. Without
loss of generality, we assume that y ∈ (q3]. Therefore y∧q2 =
y �= 0 and y∧ q3 = y �= 0. We claim that (q1]∩ (q2] �= {0} or
(q1]∩(q3] �= {0}. For otherwise, assume that (q1]∩(q2] = (q1∧
q2] = {0} and (q1] ∩ (q3] = (q1 ∧ q3] = {0}, i.e, q1 ∧ q2 = 0
and q1 ∧ q3 = 0. But this gives q1 ∧ q2 ∈ (q3]. By primeness
of (q3] and qi’s are dual atoms, we have either q1 = q3 or
q2 = q3, a contradiction to the fact that qi are distinct. Hence
without loss of generality, we assume that q1 ∧ q2 �= 0. Then
we get a path x− q1 − q2 − y in (G{0}(L))c.
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