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which was earlier exploited with great success in the theory of 
interdigital transducers of surface acoustic waves [6], theory 
of elastic wave scattering by cracks and certain advanced 
electrostatic problems [7]. 

II. GOVERNING EQUATIONS 
Consider a piezoelectric plate with its surfaces defined with 

 in Cartesian coordinate system xi, i=1,2,3. Without 
loss of generality, the further analysis concerns the PZT-5H 
piezoelectric layer. On the upper surface of the plate an 
infinite x1-periodic system of conducting strips infinitely long 
in the x2 -direction is deposited. Similarly, on the bottom 
surface of the layer an infinite x2-periodic system of infinitely 
long strips in the x1-direction is deposited as illustrated in Fig. 
1. Without loss of generality the same strip period is assumed 
on both surfaces denoted here as Λ and the strip width is w. 

The linear response of a dynamically excited piezoelectric 
plate is governed by the following set of differential equations: 
the stress equation of motion: 
 

, ,                                        1  
 
and the electrostatic charge conservation equation: 
 

, 0,                                           2  
 
where the summation conversion for repeated indices is 
employed and the index preceded by a comma means 
differentiation with respect to spatial variable, whereas the dot 
above the variable means time differentiation. In (1) and (2) T, 
u, D denote the stress tensor, mechanical displacement and 
electric displacement vectors, respectively, ρ – mass density of 
the media. 

The corresponding constitutive relations for piezoelectric 
media are as follows: 

 

,                          3  

 
where  – the elastic constants measured at constant 
electric field E; - the piezoelectric constants;  – the 
dielectric constants measured under constant strain S. 

The strain-displacement and electric-field-potential 
relations are as follows: 

 
1
2 , ,

,

,                             4  

 
where  is the electrostatic potential. Substituting (4) into (3) 
and the resulting equations into (1) and (2) one obtains: 
 

, ,

, , 0
.                     5   

The time-harmonic wave field being a function of  
where ω is angular frequency is assumed. The time derivative 
in (5) is therefore: . The solution for filed 
components in the piezoelectric layer under crossed periodic 
arrays of conducting strips is sought in the form of the 
following Bloch series [8]: 

 

Ψ
,

, Ψ
,

Ψ
, 6  

 
where Ψ  are the planar spatial harmonics defined in the 
plane 0 parallel to strip systems. In (6): 
 

,    ,    ,          7  
 
and 2 /Λ is a wavenumber of the strip arrays; 0,  
and 0,  are arbitrary spatial spectrum variables reduced 
to one Brillouin zone for the uniqueness of representation. 
Similarly,  is a wavenumber defined in the plane 0 
along the axis rotated by angle tan /  with to 
x1, x2 axes. In (6) ,  the mode amplitudes for 
mechanical displacement components and electrostatic 
potential. 

Since the spatial harmonics are orthogonal, substituting (6) 
into (5) and taking into account that: 
 

,   ,  

, ,

, ,

 

 
the corresponding Christoffel equations for each spatial 
harmonic with (n,m) indices can be deduced: 
 

0,          8  

 
where the coefficients of the matrix are given below for 
particular case of PZT-5H material: 
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,   , 1 … 4

           (9) 

 
where the material constants are represented in contracted 
form to shorten notation. It should be noted, that PZT-5H 
piezoelectric material is characterized by the following 
nonzero material constants: 
-elastic stiffness , , , , , , ,  and 

;  
- piezoelectric constants , ,  and ,  
- dielectric constants ,  and . 

The system of equations (8) has nontrivial solution only if 
its determinant is equal to zero: 

 
, 0.                               10  

 
In general case determinant of the matrix Rij can be 

expanded yielding an 8th-degree polynomial with respect to 
knm: 

 
, 0,            

 
and the polynomial coefficients are the functions of the wave-
number components and material constants. Solving the above 
equations yields eight roots in general case ,
1 … 8. In the considered case of lossless material and the 
orientation of the layer with respect to the x3-axis (poling 
direction along the x3-axis) the resulting polynomial is even 
function of knm ( 0, 1,3,5,7) with real coefficients. 
Therefore there are four pairs of roots which are either real or 
complex conjugate (in general case) representing propagating 
or evanescent modes in opposite directions in the layer, that is 
the roots satisfy the relation: 
 

, 1 … 4                       
 
Denoting the roots , 1 … 8, and inserting 

them in (8) the modes amplitudes  and  can be 
obtained which correspond to the partial waves. The general 
solution for (n,m)th  spatial harmonic that satisfies the wave 
equations is a superposition of 8 partial waves: 

, Ψ

, Ψ

         11  

 
Accounting for that in the considered case the roots come in 
pairs, (11) can be redefined as follows: 
 

, Ψ

, Ψ

         12  

 
In (12) summation is over r and the partial waves with ± 

signs are summed up for each value of r=1…4. It should be 
noted that in (12) there are 8 unknown constants  for each 
(n,m)th spatial harmonic which have to be determined from 
mechanical and electric boundary conditions considered 
below. 

III. MECHANICAL BOUNDARY CONDITIONS 
In the case of thin strips deposited on the surface of 

piezoelectric layer, mechanical boundary conditions may be 
assumed uniform. Specifically, the traction-free condition on 
the surfaces of the layer have to be satisfied: 
 

0,   ,                           13  
 
where 2h is the layer thickness and  is the normal stress 
components defined by the constitutive equations (3). 
Substituting (12) into the first equation in (3) and using Eq. 
(13) and orthogonally of spatial harmonics the system of linear 
equations for unknown coefficients  can be deduced: 
 

0,             1 … 6, 1 … 8,        14  
 
where the vector of unknown coefficients  is defined for 
(n,m)th  spatial harmonic as follows: 
 

  , 1 … 4,                15  
 
and the elements of matrix  are given by the following 
expressions: 
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,

,

                                                

                                       

,                                             

                                       

,

,

                                                

                                       

,                                            

                                       

 

The mechanical boundary conditions (13) yields 6 
equations for 8 unknown constants. The lacking equations can 
be obtained from the electric boundary conditions considered 
below. 

IV. ELECTRIC BOUNDARY CONDITIONS 
For the considered 2D array transducer electric boundary 

conditions are determined by the periodic strips deposited on 
the opposite surfaces of the layer. To find the solution of the 
problem the method of analysis based on the BIS-expansion 
known from the theory of surface acoustic waves interdigital 
transducers [5] or electrostatics of crossed periodic systems of 
conducting strips [8] can be adopted with great success. 

The boundary conditions on the upper (superscript +) and 
bottom (superscript −) surfaces of the layer imposed on the 
electric field components are: 

 
0,   0,   on strips,

∆ 0,      between strips.
                  16   

 
Stating that tangential electric field vanishes on strips and 

between strips jump of normal electric induction equals to 
zero. The electrostatic potential on the surfaces of the layer 
can be expanded into the series of surface spatial harmonics 
Ψ  as follows: 

 

, Ψ ,                     17
,

 

 
where the surface mode amplitudes result directly from (12): 

  18  

 
Since electrostatic potential in the media outside the 

piezoelectric layer should obey the Laplace equation and 
should be continuous across the boundaries , it can be 
expressed in the following form satisfying Floquet’s theorem: 

 

Ψ | |

,

,

Ψ | |

,

,
,             19  

 
where the wavenumber is defined in (7). 

The jump discontinuity induction of normal electric 
induction ∆  is defined as follows: 

 
∆ 0 0

∆ 0 0
, 20  

 
where the normal electric induction in the layer  can be 
obtain from the constitutive equations (3). Specifically, for the 
(n,m)th spatial harmonics amplitudes one obtains: 
 

          

                 ,

          

                  .

21  

 
In the media outside the layer  the amplitudes of the (n,m)th 

spatial harmonics of the normal electric induction are: 
 

,
,

, | | ,         22  
 
where the definition of electrostatic potential outside the layer 
(19) was used. Substituting (21) and (22) into (20), the jump 
of the normal electric induction (amplitudes of the (n,m)th 
harmonics) across the boundaries can be obtained 
immediately: 
 

∆          

| | ,

∆           

| | .

24  
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The components of tangential electric field in the plane of 
strips ,  results directly from the electrostatic potential 
definition, (17). Specifically, for amplitudes of the (n,m)th 
harmonics one obtains: 

 
,         25  

 
For further analysis it is convenient to consider the 

tangential field component in the planes of strips : 
 

, ,                  26  
where 

cos , sin ,  ,           

 
and the angle tan / . Taking into account the 
above definitions of ,  and  one can easily check by 
inspection that: 
 

Ψ .                                           
 
Furthermore, to apply the BIS-expansion approximation the 

relation between the tangential electric field and the jump of 
normal electric induction in the planes of strips should be 
deduced first. For this purpose it is convenient to express the 
unknown coefficient  in terms of 2 unknown constants to 
be determined from the electric boundary conditions. 
Specifically, by rearrangement of terms the system of 
equations (14) can be rewritten in the form: 
 

,    , 1 … 6,                 27  
 
where ,   and , that is: 
 

,   , , 1 … 3.     28  
 
The elements of vector B are defined as follows: 
 

,   1 … 6, 1,2 ,               29  
 
where . In (29) the new vector comprised of 2 
unknown constants is defined for each spatial harmonic (n,m): 
 

  .                            30  
 
Hence, the unknown coefficients  can be expressed in 

terms of only 2 unknown constants Ai defined in (30): 
 

.                        31  
 
In what follows, it is convenient to rewrite (31) in slightly 

different form: 
 

,                                         32  

which allows all the unknown constants   to be found in 
terms of . It should be noted that: 
 

1, 0; 0, 1,
, , 1 … 6, 1,2             33  

and 
.                                   34  

 
Therefore only 2 coefficients ( ) defined in (30) remain 

unknown which have to be determined from the electric 
boundary conditions. Using the unknown variables defined in 
(30) (the subscripts n,m show that the variables are defined for 
each spatial harmonic), the mode amplitudes of the electric 
potential in the planes  defined in (18) can be 
rewritten as follows: 

 

 .                      (35) 

 
In the above equation the matrix form is used to shorten 

notation, where the elements of matrix L are: 
 

, 36  

 
where the elements of matrix  are defined in (33) for each 
spatial harmonic, which is denoted by the n,m subscripts. 
Similarly, the mode amplitudes of the (n,m)th spatial harmonic 
of the tangential electric field  can be written as follows: 
 

 .               37  

 
Finally, for the jump of normal electric induction defined in 

(24) can be rewritten in the following form: 
 

∆
 ∆ ,               38  

 
where the matrix M is defined below: 
 

| |

| |

   39  

 
From (37) and (38) the relationship between the tangential 

electric field and normal electric induction on the surfaces of 
piezoelectric layer can be obtained immediately: 

 
 ∆ ,                          40  
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where  , ∆ ∆  ∆  and 
 

.                            41  
 
In (41) the elements of corresponding matrices L and M are 

defined in (36) and (39), respectively. 

V. BIS-EXPANSION APPROXIMATION 
To satisfy the electric boundary conditions (16) and find the 

unknowns Ai, =1,2 in (30) the BIS-expansion method is used 
[8]. For this purpose, the electric field and normal electric 
induction on the plane  can be expanded into the series: 

 

, ,

Δ Ψ ,

,
, ,

Δ Ψ ,

∆
, ,

Δ Ψ ,

                       42  

 
where Δ cos /Λ , ·  - is the Legendre polynomials; 

0 for 0 and 1 otherwise; w - is the strip's 
width. The above expansions yield the electric field satisfying 
boundary conditions and the edge condition. Specifically, E1 
and D3 components are inverse square-root singular functions 
at the strip edges. As regard the E2 components, it is not 
singular but its spatial derivative with respect to x1 has inverse 
square-root singularity at the strip edges as well. Therefore, in 
(42) the corresponding series expansion of ,  is defined. In a 
similar manner on the plane  electric field 
components can be expanded in the series as follows: 
 

, ,

Δ Ψ ,

,
, ,

Δ Ψ ,

∆
, ,

Δ Ψ .

                 43  

 
Using (25) it can be shown that the following relationships 

between coefficients exist: 
 

,   ,                     44   
 
The unknown coefficients ,   and ,  can be 

evaluated using the relationship between tangential electric 
field and normal electric induction on the upper and bottom 
boundaries given by (40). It should be noted, that the (n,m)th 
tangential electric field can be expressed as follows: 

 

 ,  ,                45  

 
where the (42) and (42) were used. Consequently, the 

expansions for tangential field components can be written as 
follows: 
 

, ,

Δ Ψ ,

, ,

Δ Ψ .
           46  

 
To proceed further, let’s consider the matrix G in (41) for 

large indexes (n,m) corresponding to imaginary knmr and the 
spatial harmonics being well-localized at a given surface of 
piezoelectric layer which represent the evanescent modes. In 
this case the following approximation of the matrix G for 
sufficiently large indices (n,m) holds [8]: 

 

 

1
0

0
1

∆
 ∆ ,      47  

 
where ;  and  can be obtained from (41) and 
(36), (39) upon substituting the approximation 

| | which can be applied for sufficiently large (n,m): 
 

.   48  
 
In (48) the corresponding constants  results from the 

asymptotic analysis of the corresponding relations between 
partial wave amplitudes  and : 

 

lim
,

            49  

 
and can be only obtained numerically for specified material 
constants of the piezoelectric layer. 

For certain large indices n>N and m>M for which (47) 
holds, the following relationships between ,   and , 

 results immediately: 
 

,  ,   50  

 
which is a generalization of the so-called a BIS-expansion 
approximation [8]. Taking into account (50) and substituting 
the spatial harmonics with indices (n<N, m<M) from (42), 
(43) and (46) into (40) the following conditions for unknown 
coefficients ,  and ,  for any 
n, m separately within these domains: 
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| | ∆                  
 

                               ∆ 0,
  

∆                          

| | ∆ 0.

   51  

 
Applying (n, m) outside the chosen domains results in a 

trivial solution for the additionally included unknowns [8]. 
Strips potentials can now be evaluated by integration of the 
tangential electric field, their integration being performed for 
each spatial harmonic separately. For a strip placed at x1=0 (on 
the upper surface) x2=0 (at the bottom surface) they are: 

 
∑ ∆

∑ ∆
0

,   52  

 
(the bottom strips assumed grounded). The corresponding 
summation over n and m in (52) can be evaluated explicitly 
using the Dougall identity [9]: 
 

1 ⁄ ∆ sin ⁄

1 ⁄ ∆ 0
   53  

 
for any (n,m) accounted for in (51). In (53) where  - is the 
Kronecker delta. Therefore, (51), (53) yields the closed system 
of linear equations for unknown expansion coefficients 

,  . Specifically, there are (2N+1)(2M+1) equations 
altogether and the same number of unknowns , , where 

 and  is assumed. Once the system 
of equations for , , is solved, the unknown constants 

, 1,2 defined in (30) can be obtained from (37) 
accounting for (46), which explicitly yields for (n,m)th spatial 
harmonics: 
 

∑ Δ

∑ ∆
 (54) 

 
Solving (54) yields the constants , 1,2 and 

therefore, all unknown constants  for each spatial 
harmonics from (32). This completes the solution of the 
problem in general case, when arbitrary potentials of the strips 
are specified.  

 
(a) 

 
(b) 

Fig. 2 Magnitude of the normal electric field in the Λ Λ domain of 
the layer at the plane 0 for different thickness (a) Λ⁄

0.1 and (b) Λ⁄ 0.5; the strip’s width Λ⁄ 0.5 
 
Some numerical examples are shown in Fig. 2. Specifically, 

normal component of the electrostatic field in the layer middle 
plane 0  is shown in relative scale for fixed strip’s width 

Λ 0.5⁄  and different thickness of the layer. 
The example corresponds to the case when a single cell of 

the transducer is excited by uniform voltage applied to one 
upper strip and all bottom strips grounded. As is seen from 
Fig. 2, the electric field distribution at the middle plane of the 
layer significantly departs from uniform and spans somewhat 
outside the cell covered by the supplied strips. 

VI. CONCLUSION 
Summarizing, the extension of the BIS-expansion method, 

originally developed for electrostatic analysis of 1-D periodic 
planar systems of strips, was presented for modeling of 2-D 
periodic structure comprised of crossed arrays of strips placed 
on the opposite surfaces of the dielectric piezoelectric layer.  It 
is an example of novel 2-D array transducer architecture with 
potential application in 3-D ultrasound imaging. Without loss 
of generality the same strip width an period on the opposite 
surfaces was assumed. The method can be generalized for 
different strip period and width straightforwardly. Numerical 
examples show the resulting nonuniform electrostatic field 
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induced in the area of a single matrix cell excited by a uniform 
voltage applied to one upper strip and all bottom strips 
grounded.  
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