
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1052

Abstract—This paper aims at introducing finite automata theory,

the different ways to describe regular languages and create a program

to implement the subset construction algorithms to convert

nondeterministic finite automata (NFA) to deterministic finite

automata (DFA). This program is written in c++ programming

language. The program reads FA 5tuples from text file and then

classifies it into either DFA or NFA. For DFA, the program will read

the string w and decide whether it is acceptable or not. If accepted, the

program will save the tracking path and point it out. On the other hand,

when the automation is NFA, the program will change the Automation

to DFA so that it is easy to track and it can decide whether the w exists

in the regular language or not.

Keywords—Finite Automata, subset construction DFA, NFA.

I. INTRODUCTION

HE automata have been resulted through many years by

intellective development where it is try to reducing off

human interference. In computing field, automata theory

represents abstract computing, where it is computing without

middle software. Moreover automata exist in most computer

science fields.

Therefore, it is very important to invest more time studying

automata theories and to build and develop large systems such

as programming language compilers.

II. FA USES

Finite Automata are used as a model for

- Software for designing digital circuits.

- Lexical analyzer of a compiler.

- Searching for keywords in a file or on the web.

- Software for verifying finite state systems, such as

communication protocols.

- Designing the states of large systems.

- Natural Language Processing.

III. PAPER BACKGROUND

A. FA Definition

A finite automaton has a set of states, and it is “control”

moves from state to state in response to external inputs [1].

Abdulmajid Afat is with the Faculty of Information Technology, Misurata

University, Misurata, Libya (Phone: 00218924958946; e-mail:

abdoo_84_2004@yahoo.com).

B. FA Types

There are two main types of finite automata and this types is

according to the type of movement [3]:

� DFA Deterministic Finite Automat: one input at one time

movement will be in just one state.

DFA is easy to track, so it is easy to build the program and

perform tracking functions. However, it is hard to design.

DFA quintuples/ definition [4] (Q,∑,δ,q0,F)

o Q Is finite set of states.

o ∑ is finite set of alphabet (input symbols).

o q0 is start state.

o δ is transition function δ(q,a)=p.

a input symbol.

q,p states in Q.

o F subset of Q.

Fig. 1 Automation of DFA for L(A) [2] L(A)={w: w in {0,1}* and w

value is even}

� NFA Nondeterministic Finite Automata: one input at one

time and the movement may be in several states.

Although NFA is easy to design, it is difficult to track.

Therefore, it must be changed to DFA by using subset

construction algorithm.

NFA quintuples (Q,∑,δ,q0,F)

o Q Is finite set of states.

o ∑ is finite set of alphabet (input symbols).

o q0 is start state.

o δ is transition function δ(Y,a)=X.

a input symbol.

Y subset of Q.

X subset of Q.

o F subset of Q.

Abdulmajid Mukhtar Afat

The Different Ways to Describe Regular Languages by

Using Finite Automata and the Changing Algorithm

Implementation

T

start

1

0

0,1

0,1

q0 q2

q1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1053

Fig. 2 Automation of NFA for L(A) L(A)={w: w =x01y and w,x,y in

{0,1}* }

IV. FORMAL LANGUAGES CONCEPTS

• A formal language is a set of words, i.e. finite strings of

letters, symbols, or tokens. The set from which these letters

are taken is called the alphabet over which the language is

defined [5].

• Alphabet: finite set of symbols

Examples: {0,1} (the binary alphabet).

{a,b,c,...,z}

• String (w): sequence of symbols chosen from some

alphabet.

Examples: 01101, cin

• Language: set of strings chosen from some alphabet.

Examples:

- the set of string consisting on n 0’s followed by n 1’s.

o {ε,01,011,1010,…}

- The set of compliable C programs.

- The set of Arabic words.

• Powers of an Alphabet

If Σ is an alphabet, define Σ
k
 to be the set of strings of length

k, consisting of symbols in Σ.

The set of all strings over Σ is denoted Σ
*
. As the following:

Σ
*
 = Σ

0
 U Σ

1
 U Σ

2
 U…

Σ
0
={ε}

Σ
+
 = Σ

1
 U Σ

2
 U Σ

3
 U….

Σ
*
 = Σ

+
 U { ε }

V. REGULAR LANGUAGES

Transition Function Extension δ
'
: δ

'
it is extending δ

to be

applied on q and string w.

Base: δ
'
(q0 ,ε)= q0

Induction: if w= xa where x is substring and a is an input then

δ
'
(q0 ,xa)= δ (δ

'
(q0 ,x),a)

Define: language for DFA of A=(Q,∑,δ,q0,F)

L(A)={w:δ
'
(q0 , w) in F}

Define: language for NFA of A=(Q,∑,δ,q0,F)

L(A)={w:δ
'
(q0 , w) is subset of F}

So regular language is language can represent it by automaton

FA (DFA or NFA)

VI. SUBSET CONSTRUCTION ALGORITHM

Subset construction algorithm is use to change NFA to DFA

because NFA is impossible to track. However, if changed to

DFA, the automation will be easier to track, and then to build

program that represents the DFA. So, for each NFA, there is an

equivalent DFA.

Subset construction algorithm tuples:

• QD ={S:S subset of QN}

• FD ={S:S subset of QN and S∩FN≠Ø }

• For every S subset of QN and a in ∑δD (S,a)=Up in s δN (p,a)

• qoD = qoN

• NFA and DFA have the same ∑.

Example:

The resulted transition table after implement subset

construction algorithm on the automation in Fig. 2 is the

following.

TABLE I

DFA TRANSITION DIAGRAM

 0 1

q0 q0, q1 q0

q0, q1 q0, q1 q0, q2

q0, q2 q0, q1,q2 q0, q2

q0, q1,q2 q0, q1,q2 q1,q2

q1,q2 q2 q2

q2 q2 q2

Note: QD ={S:S subset of QN}, so |QD|=2
n
-1 =7 in the

previous example. If assume that |QN|=10 then |QD| in this case

will be 2
10

-1=1023. It is so hard and expensive (time and

memory). Therefore it is better to use rules for accessible States.

Rules for Accessible States:

Base: q0 is accessible state.

Induction: if S accessible state then UaЄ ∑ δ(S,a).

The Resulted diagram is the following:

Fig. 3 Automation of DFA for L(A) L(A)={w: w =x01y and w,x,y in

{0,1}* }

VII. PROBLEM DEFINITION

In automata theory, the problem is the question of deciding

whether a given string w is a member of some particular

language [1].

If L language over ∑
*
 and w in ∑

*
, then the problem is

deciding whether w in L or not.

0

1 0,1

start 1 0

1

0,1

q0

q2

q0,q1

0

q0,q2

1

q0,q1,q2

0

q1,q2

start 1 0

0,1 0,1

q0 q2 q1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1054

VIII. DESIGN

The starting point is reading quintuples of FA. The quintuples

will be in text file. Thus the program will classify the FA

(DFA/NFA) According to quintuples.

• Program inputs:

o FA quintuples.

o The string w.

• Changing NFA to DFA if NFA

• Program outputs:

o Deciding if w accepted or rejected.

o Saving the tracking path to be input for other program.

Tracking path is all stats were passed by the word w.

o Print out the new quintuples if entered FA was NFA.

Fig. 4 Program flowchart

IX. TESTING

The program has been tested to the following FA's:

Fig. 5 Testing the program on the example in Fig. 2

Fig. 6 Automation of NFA for L(A) L(A)={w: w =x01 and w,x in

{0,1}* }

Fig. 7 Testing the program on the example in Fig. 6

X. PROGRAM FUNCTIONS

1. Copyquaitupletoarrays() reading quintuples from text file

and save it to arrays.

2. isitNFA() testing the FA(NFA/DFA).

3. NFAtoDFA() convert the NFA to DFA.

4. FinalStates() specify the new final state.

5. Delrep() delete repeting from string.

6. Tracking() return 1 if woard in language/ 0 if not.

7. Other simple function like copy, print arrays.

XI. NFATODFA SOURCE CODES

Source code for subset construction algorithm in c++

language:

 void NFAtoDFA(stt seg[50],stt Q[50],stt fs[50],stt

tt[50][50],char q0[],int &Ql,int &segl,int &fsl,int &ttc)

{

stt newQ[50], newtt[50][50];

int newQl;

int i,j,w,f1,tr;

char buf[20];

strcpy(newQ[0].s,q0);

newQl=1;

for(i=0;i<segl;i++)

strcpy(newtt[0][i].s,tt[0][i].s);

int newttR=1;

for(i=0;i<newttR;i++)

for(j=0;j<segl;j++)

{

 f1=0;

for(int m=0;m<newQl;m++)

if (strcmp(newtt[i][j].s,newQ[m].s)==0) f1=1;

if ((f1==0)&&strcmp(tt[i][j].s,"_")!=0)

 {

 strcpy(newQ[newQl].s,newtt[i][j].s);

no

no yes

yes

start

Input file path and name

Open the text file

Copy FA 5tuples(language L) to arrays

If NFA

Change to DFA

Read w string

If w in L

Save the path

Yes w in L

No w not in L

End

start 1 0

0,1

q0 q2 q1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1055

 for(w=0;w<=segl;w++)

 newtt[newttR][w].s[0]='\0';

int ta=0;

 for(int x=0;newQ[newQl].s[x]!='\0';x++)

 {

 if (newQ[newQl].s[x]!=',')

 {

 buf[ta]=newQ[newQl].s[x];

 ta=ta++;

 }

 if ((newQ[newQl].s[x]==',') ||

(newQ[newQl].s[x+1]=='\0'))

 {

 buf[ta]='\0';

 for(w=0;w<Ql;w++)

 if (strcmp(buf,Q[w].s)==0) tr=w;

 for(w=0;w<segl;w++)

 if(strcmp(tt[tr][w].s,"_")!=0)

 {

 strcat(newtt[newttR][w].s,tt[tr][w].s);

 strcat(newtt[newttR][w].s,",");

 }

 strcpy(buf,"");

 ta=0;

 }

 }

 for(w=0;w<segl;w++)

 if (newtt[newttR][w].s[strlen(newtt[newttR][w].s)-1]==',')

 newtt[newttR][w].s[strlen(newtt[newttR][w].s)-1]='\0';

 for(w=0;w<segl;w++)

 delrep(newtt[newttR][w].s);

 for(w=0;w<segl;w++)

 if (strcmp(newtt[newttR][w].s,"")==0)

strcpy(newtt[newttR][w].s,"_");

 newttR++;

 newQl++;

 }

}

REFERENCES

[1] Jhone E.Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Introduction to

automata theory, languages and computation. By Addison- Wesley 2nd

Edition, 2001.

[2] Tarek Majid. Theory of Cmputation. Amman- Jordan 1st
 Edition2005.

[3] S.P. Eugene Xavier. Theory of Automata, Formal Languages and

Computation. By New Age International (P) Ltd, 2005.

[4] Finite Automata. Available at https://www.cs.rochester.edu/u/nelson/

courses/csc_173/fa/fa.html (Accessed Sep 2014).

[5] Formal language. Available at https://www.princeton.edu/~achaney/

tmve/wiki100k/docs/Formal_language.html (Accessed Sep 2014).

