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Abstract—A generalized vortex lattice method for complex 
lifting surfaces with flap and aileron deflection is formulated. The 

method is not restricted by the linearized theory assumption and 

accounts for all standard geometric lifting surface parameters: 

camber, taper, sweep, washout, dihedral, in addition to flap and 

aileron deflection. Thickness is not accounted for since the physical 

lifting body is replaced by a lattice of panels located on the mean 

camber surface. This panel lattice setup and the treatment of different 

wake geometries is what distinguish the present work form the 

overwhelming majority of previous solutions based on the vortex 

lattice method. A MATLAB code implementing the proposed 

formulation is developed and validated by comparing our results to 

existing experimental and numerical ones and good agreement is 

demonstrated. It is then used to study the accuracy of the widely used 

classical vortex-lattice method. It is shown that the classical approach 

gives good agreement in the clean configuration but is off by as much 

as 30% when a flap or aileron deflection of 30° is imposed. This 

discrepancy is mainly due the linearized theory assumption 

associated with the conventional method. A comparison of the effect 

of four different wake geometries on the values of aerodynamic 

coefficients was also carried out and it is found that the choice of the 

wake shape had very little effect on the results. 

 

Keywords—Aileron deflection, camber-surface-bound vortices, 
classical VLM, Generalized VLM, flap deflection.  

I. INTRODUCTION 

INCE Prandtl’s lifting line theory is not appropriate for 

low-aspect-ratio straight wings, swept wings, and so-

called delta wings, other aerodynamic models had to be 

devised in order to predict the aerodynamic characteristics of 

such plan forms. Among these models is the classical vortex 

lattice method. The VLM has been in use since the sixties of 

the twentieth century and is well documented in the literature 

[1], [2]. It has been applied to the estimation of aerodynamic 

properties of lifting surfaces and even full airplanes. It belongs 

to a family of numerical methods which solve potential flow 

problems on lifting surfaces such as wings, fins, horizontal 

tails, canards, and even fuselages. These methods replace the 

actual lifting body with a surface distribution of singular 

elements (sources, vortices, doublets or a combination of these 

elements) and apply the tangential flow boundary condition in 

order to determine the strengths of the singular elements. The 

Kutta-Joukowski theorem is then applied to determine the 
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aerodynamic coefficients of interest. 

The principle of the VLM method is to replace the lifting 

body with an equivalent lifting surface which is then divided 

into a grid of trapezoidal panels. To each panel is attached a 

horseshoe vortex whose bound vortex lies on the quarter-

chord of the panel and whose trailing vortices extend 

downstream to infinity, in a plane that is parallel to the plane 

of symmetry of the body. In classical VLM solutions based on 

linearized theory, the vortex-lattice is flat and the trailing 

vortices extend to infinity in a direction that is either parallel 

to the lifting body centerline or to the free stream velocity. 

The flat vortex lattice neglects any displacement of the surface 

away from the x-y plane which occurs in the wing or wake. 

This displacement is taken into consideration only in the 

application of the boundary condition which is imposed on the 

actual cambered surface. 

Some of the most important work applying the classical 

VLM goes back to 1971 and was developed at NASA [3]. It 

dealt with complex plan forms which included camber, 

variable sweep and dihedral, washout, and combinations of 

wing with either a canard or a tail. A more recent work 

applying the classical VLM [4] presented a program for 

estimating aerodynamic characteristics of flapped and twisted 

plan forms but did not include camber, taper, sweep, nor 

dihedral.  

The approach adopted in the present work is more general 

than the classical VLM. The panels are placed on the mean 

camber surface of the body. To each panel is attached a 

horseshoe vortex with bound vortex segment located at the 

quarter-chord of the panel. The trailing vortices originating at 

the endpoints of the bound vortices, initially follow the 

curvature of the mean camber surface up to the trailing edge, 

then take a specified downward path (except for an upward 

deflected aileron) for a certain distance downstream of the 

trailing edge to eventually be realigned with the free stream 

velocity. In order to investigate the influence of the wake 

geometry, four cases of trailing vortices shapes are considered. 

A MATLAB code implementing the present generalized 

approach was developed and used to assess the accuracy of the 

classical VLM particularly in regard to flap and aileron 

deflections. The work presented in [5] is some ways similar to 

the present one but it did not include any control surface 

deflection. Moreover, the boundary condition applied was of a 

linearized form and required the addition of the influence of 

vortex images and the so-called “wave making influences” 

suitable for hydrofoils. Moreover, they only considered one 
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type of wake model, consisting of semi infinite trailing 

vortices parallel to undisturbed free sea surface. 

II. DETAILS OF THE GENERALIZED VORTEX-LATTICE METHOD 

In the present work the wing is replaced by a lattice of 

trapezoidal panels which are superimposed on its mean 

camber surface. The shape of this surface is defined by airfoil 

camber, wing aspect ratio, taper, sweep, dihedral, washout, 

and flap and/or aileron deflection. 

 

 

Fig. 1 Wing geometry, panel lattice, horse-shoe vortices, and control 

points 

 

The coordinates of panel nodes, horse-shoe vortices corner 

points, and control points will be at first defined by accounting 

for wing section camber, dihedral, and sweep only. Then a set 

of rotations will be applied to these coordinates in order to add 

the effect of washout and flap and/or aileron deflection.  

Before the effect of washout or flap and/or aileron 

deflection is considered, a point on the mean camber surface, 

situated at a given wing section �, is defined by the following 
coordinates: 

 �� � ��/2 	 
� � 1
��  ,   � � 1, � , ��                     (1) 
 �� � ��� 	 �� � ���� ��� ��� 	 ��           � � ��� 	 ��
��
 � ���� ���  	 ��
��
!                       (2) 
 

where ��
��
 defines the shape of the mean camber line of the 
wing section in its local frame of reference 
�� , "� , ��
, as 
shown in Fig. 1. The index LE refers to the wing leading edge. 

The effect of washout is now added. It is assumed to vary 

linearly, from 0° at the centerline to a maximum negative 

value #$ at wing tip. This corresponds to a constant negative 
washout gradient: 
 

%# %�⁄ �  2#$ �⁄                                        (3) 
 

and the change in angle of attack at wing section ��  due to 
wing washout is given by: 

 #$� � ���� %# %�⁄                                       (4) 
 

Wing twisting is carried out about the leading edge. It 

affects only 
�, �
 coordinates and the changes in these 
coordinates at the ��-section are given by: 
 '��(��() � '�������� ) 	 * +,- #$� -.� #$�� -.� #$� +,- #$�/ '�� � ������ � ���� )        (5) 
 

The prime symbol in the above equation does not refer to 

the first derivative and the washout angle #$ is considered 
positive here, although it represents a decrease in angle of 

attack. 

Flap and/or aileron deflection also affects the shape of the 

mean camber surface. Before adding the effect of washout, the 
�, �
-coordinates of points at flap level are given by (Fig. 2): 
 

0 � 1 ���2                                                                                  � 3�452 	 �67 8 � 8 ��452  ,9   �452 8 � 8 �452 	 �6 !     (6) 
 

These coordinates, like all points of the lifting surface, first 

undergo the effect of washout, then the effect of flap 

deflection. The latter is the result of a rotation of the flap about 

its leading edge, given by the transformation: 

 :�;;�;;< � '�;��2�;��2) 	 * +,- =6 -.� =6� -.� =6 +,- =6/ '�; � �;��2�; � �;��2)       (7) 
 

For points on ailerons, a similar transformation is applied 

but with deflection angle => replaced by =?. 
 

 

Fig. 2 Definition of flap and aileron geometry 

 

Fig. 3 gives a sample case of a swept wing planform with 

camber, washout, taper, and dihedral. Flaps and ailerons are 

also deployed. It also shows samples of horseshoe vortices 

adhering to the mean camber surface. 

To each panel is attached a horseshoe vortex. The bound-

vortex segment is located at the panel’s quarter-chord, and, as 

mentioned earlier, the trailing vortices originating at the 

endpoints of the bound vortex initially follow the curvature of 
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the mean camber surface up to the trailing edge, then take a 

specified downward path (or an upward path for an upward 

deflected aileron) for a certain distance downstream of the 

trailing edge, to eventually be realigned with the free stream 

velocity or any other given direction. A control point is also 

placed at the three-quarter position on the spanwise center line 

of each panel. As in the classical VLM, it is at control points 

that the tangential flow boundary conditions are imposed. 

For classical VLM solutions which deal with non planar 

lifting plan forms, the vortex lattice is flat and lies underneath 

the actual wing camber surface. The tangential flow boundary 

condition is on the other hand applied on the mean camber 

surface itself. Because linearized theory is used in the classical 

VLM, high accuracy is not expected when flaps and ailerons 

are deployed at high deflection angles. 

 

Fig. 3 Mean camber surface with sample curved horseshoe vortices attached to it (=6 � 30°, =? � 20°) 
 

The velocity induced by the horseshoe vortices on any 

given control point is computed in the same manner as for the 

classical VLM, the difference being the number of vortex 

segments. In the classical VLM, this number is limited to 

three: the bound vortex and two trailing vortices. In the 

present generalized method, however, the number of segments 

is much higher and depends on the chordwise location of the 

bound vortex, on the lattice resolution, and on the number of 

points defining the wake. Nonetheless, the same basic 

formulas associated with the horseshoe vortex given in [1] can 

still used in the present formulation. 

First, what is needed is a general expression of the velocity 

induced by a finite segment A-B at some control point of 

coordinates 
�, �, �
. So let 
�L, �L , �L
 and 
�M, �M, �M
 be the 
coordinates of points A, and B respectively. The desired 

expression is given by [1]: 

 NOP � QRMS TU�+1VWXTU�+2VWX                         (8)  
where Γ5 is the vortex strength, and: 
 U�+1VW � TZ[� � �L5\[� � �M5\ � [� � �M5\[� � �L5\]B                   �Z[� � �L5\[� � �M5\ � [� � �M5\[� � �L5\]C 

                  	Z[� � �L5\[� � �M5\ � [� � �M5\[� � �L5\]^X                   /TZ[� � �L5\[� � �M5\ � [� � �M5\[� � �L5\]M
                   	Z[� � �L5\[� � �M5\ � [� � �M5\[� � �L5\]M
                    	Z[� � �L5\[� � �M5\ � [� � �M5\[� � �L5\]MX 

 U�+2VW � _[�M5 � �L5\[� � �L5\ 	 [�M5 � �L5\[� � �L5\  
	[�M5 � �L5\[� � �L5\]/a[� � �L5\M 	 [� � �L5\M 	 [� � �L5\M �_[�M5 � �L5\[� � �M5\ 	 [�M5 � �L5\[� � �M5\ 
 	[�M5 � �L5\[� � �M5\]/a[� � �M5\M 	 [� � �M5\M 	 [� � �M5\M  
 

The above equations are good for any bound vortex as well 

as for the segments that make up the curved part of the trailing 

vortices, from the endpoints of the bound vortex to points Q 

and R (Fig. 4). One key restriction on the use of these 

equations is that the vorticity vector has to be oriented from 

point A to point B. 
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Fig. 4 Side and top views showing the segments which define a 

typical horseshoe vortex 

 

The contributions of the last portions aft of points Q and R 

are computed using the formula from the classical VLM for a 

vortex leg extending to infinity, provided that the frame of 

reference is rotated around the �-axis in a way that the new 
abscissa axis points in the prescribed direction of these trailing 

vortex legs, given by angle b$ in Fig. 4.  
The coordinates of points on these segments as well as 

those of all control points are first transformed according to 

the rule: 

 

c�d�̂�df � g +,- b$ 0 -.� b$0 1 0�-.� b$ 0 +,- b$h i���j                      (9) 
 

Then the usual formula used in the classical VLM [1] is 

applied in terms of coordinates in the new rotated frame: 

 

Nkl( � QRMS � [mnomnpR\Cq[�rpRo�r\^s
t[mnomnpR\uq[�rpRo�r\uvw i1 	 xn oxnpRa[xnoxnpR\uq[�ro�rpR\uq[mnomnpR\uj(10) 

 

Nyl( � QRMS � [mn omnuR\Cq[�ruRo�r\^st[mnomnuR\uq[�ruRo�r\uvw i1 	 xnoxnuRa[xnoxnuR\uq[�ro�ruR\uq[mnomnuR\uj (11) 
 

The above contributions need to be transferred back to the 

original 
�, �, �
 frame. The backward transformation is 
simply a rotation in the opposite sense and is given by the 

equation:  

 

iz{∞|{∞}{∞

j � ~� }r{∞
′ -.� b$|{$′}r{∞

′ +,- b$
�                          (12) 

 

where [0, |�{l( , }r{l( \ are the coordinates of Nkl(  in the rotated 

frame and [z{l, |{l, }{l\ are those in the wing’s original 
frame. 

It’s clear that the rotation did not affect the �-component of 
the induced velocity but has given rise to a �-component: 
 

z{l � � QRMS [�rpRo�r\ �45 ��[mnomnpR\uq[�rpRo�r\u c1 	 xn oxnpRa[xn oxnpR\uq[�ro�rpR\uq[mnomnpR\uf (13-a) 
 

|{l � QRMS mnomnpR[mn omnpR\uq[�rpRo�r\u  c1 	 xn oxnpRa[xn oxnpR\uq[�ro�rpR\uq[mnomnpR\uf (13-b) 
 

}{l � QRMS [�rpRo�r\ ��� ��[mnomnpR\uq[�rpRo�r\u  c1 	 xn oxnpRa[xn oxnpR\uq[�ro�rpR\uq[mnomnpR\uf (13-c) 
   In a similar way, the components of Nyl( in the wing frame 

are easily obtained: 

 

z�l � � QRMS [�ruRo�r\ �45 ��[mnomnuR\uq[�ruRo�r\u  c1 	 xn oxnuRa[xn oxnuR\uq[�ro�ruR\uq[mn omnuR\uf (14-a) 
 

|�l � QRMS mnomnuR[mnomnuR\uq[�ruRo�r\u c1 	 xn oxnuRa[xn oxnuR\uq[�ro�ruR\uq[mnomnuR\uf (14-b) 
 

}�l � QRMS [�ruRo�r\ ��� ��[mnomnuR\uq[�ruRo�r\u c1 	 xnoxnuRa[xn oxnuR\uq[�ro�ruR\uq[mnomnuR\uf (14-c) 
 

The total velocity induced by the horseshoe vortex from 

panel n at control point on panel m is obtained by summing 

the contribution from all the finite segments, as given by (8), 

and from the two semi infinite segments, “Q∞” and “R∞”, as 
given by (13) and (14). The result can be written if the form: 

 N�,� � ��,��5                                   (15)  
The overall velocity induced at control point � by all the 

horseshoe vortices is: 
 N�B � ∑ ��,��5�5�L � z�4B 	 |�4C 	 }�4^                                                (16) 

III. BOUNDARY CONDITION 

The strengths of the bound vortices are obtained, as for the 

classical VLM, by application of the tangential flow boundary 

condition at the cambered surface, specifically at control 

points located at the three quarter chord position in the 

spanwise center line of each panel. This boundary condition 

means that the total velocity at control point � has no 
component normal to the lifting surface at that point.  

The lifting surface can be modeled by the equation: 
 � � �
�, �
                                          (17) 
 

Rewrite the above equation in the form: 

 

  U
�, �, �
 � � � �
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 � 0                                   
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Then the boundary condition can be modeled by the 

equation: 

 N� · 
�U
� � 0                                       (18) 
 

where �U is the gradient of function U. It is normal to the 
surface at any control point �: 
 
�U
� � � 3�6�x7� B � 3�6��7� C 	 ^                                                                                    (19) 
     

Or the total velocity at any control point is the sum of N�4, 
given by (16), and the free stream velocity which is: 

 Nl � B�l +,- # 	 ^ �l-.� #                       (20)  
                     

where # is the local section angle of attack, at the spanwise 
location of point �. So the total velocity is: 
 N� � [�l +,- # 	 z�4\B 	 |�4C 	 [�l-.� # 	 }� 4\^                (21) 
 

Substituting (19) and (21) into (18) and using (16) leads to 

the following equation: 

 

� ������� g�l +,- # 	 � ��,5B�5
�

5�L h � ������� g� ��,5C�5
�

5�L h 	 g�l -.� # 	 � ��,5^�5
�

5�L h � 0 
 

Collecting the terms containing the vortex strengths, a 

linear system of algebraic equations is obtained: 

 ∑ :��,5^ � 3�6�x7� ��,5B � 3�6��7� ��,5C< �5�5�L � �l :3�6�x7� +,- # � -.� #< (22) 
 

for � � 1, … , �. 
Equation (22) is the basis of the solution of the generalized 

VLM problem. The details behind the computations of ��/�� 
and �� ��⁄  in this equation are rather lengthy and it is left to 

the reader to develop these derivatives.  

Once the vortex strengths are obtained, various 

aerodynamic coefficients can be obtained by means of the 

Kutta-Joukowski theorem [1], [3]. The lift and induced drag 

coefficients are computed according to the equations: 

 �� � MV��u��u ∑ 
�l 	 z� 
� �¡ �L ∆�                    (23) 
 �£¤ � � MV��u��u ∑ }¥ � �¡ �L ∆�                      (24) 
 

While the pitching moment coefficient at the mean 

aerodynamic center, and the rolling moment coefficients are 

given by: 

 ��@¦ � MV��§�u��u ∑ 
�?� � � 

�l 	 z� 
� �¡ �L ∆�         (25)  
      �¨ � � MV��©��u ∑ � 
�l 	 z� 
� �¡ �L ∆�                 (26)     
 

In the above equations, �  and �   are the coordinates of the 
centers of the bound vortices and 
z� , |� , }¥ 
 are the overall 

induced velocity components at those centers and not at the 

control points. The coordinate of the mean aerodynamic center 

is given by: 
 �?� � +�4 	 1 	 2«1 	 « �6 ��� ���    
 

where +­ is the wing centerline chord. 
IV. VALIDATION 

A. An Example from Bertin and Smith 

Reference [1] gives the lift coefficient as a function of angle 

of attack for a wing with an aspect ratio of 5, a taper ratio of 

unity, an uncambered section, and a 45° sweep angle. The 

corresponding lift-curve slope is: 

 ��® � 3.443/9�% 
 

With an identical lattice, the present code gives: 

 ��® � 3.4416/9�% 
 

The two values are almost identical. The relative difference 

between them is 0.04%. 

B. An Example from NACA TN N°1270  

Reference [6] presents the results of an experimental study 

of seven wings of NACA 44-series sections, with aspect ratios 

of 8, 10, and 12 and taper ratios of 0.4 and 0.286. The wings 

were also twisted but had neither dihedral nor sweep at the 

quarter-chord line. 

Among these wings, one with an aspect ratio of 8, a taper 

ratio of 0.4 and a washout of -4.5° is considered for 

comparison. This wing also had a thickness-to-chord ratio 

varying from 16% at the root to 12% at wing tip. This 

geometric property was not taken into consideration since the 

VLM does not account for section thickness. Instead, the 

NACA 4415 was taken over the entire span. 

A lattice of 8 chordwise rows and 40 spanwise rows of 

panels was used. Values for the lift curve slope, maximum lift-

to-drag ratio, and zero-lift angle of attack are compared to 

experimental ones and overall good agreement is obtained as 

shown in Fig. 5 and Table I.  

When computing the maximum lift-to-drag ratio, since the 

VLM gives only the induced drag coefficient, the profile drag 

coefficient was directly read from the experimental drag polar 

given in [9], at an angle of attack of 3°. This is the angle of 

attack yielding the highest value of L/D. 

C. An Example from NASA TN D-6142  

Among the cases studied in [3] is a 45° swept wing with 

aspect ratios of 7 and a taper ratio of 1. The lift curve slope is 

computed for different values of the number of panels per half 

span (�°) and compared to values given in that reference. The 
results are presented in Fig. 6 and again good agreement is 

obtained. 
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Fig. 5  Lift curve for the tapered and twisted wing 

 
TABLE I 

COMPARISON OF PRESENT WORK RESULTS TO EXPERIMENTAL ONES 

Variable ��± 
² ³⁄ 
�?´ #��­(°) 
Reference value 0.082 27.8 -2.9 

Present work 0.084 28.2 -2.81 

% difference 2 1 3 

 

 

Fig. 6 Comparison of values of ��® to those from [3] 
D. Evaluating Flap Effectiveness 

In order to check the accuracy of the generalized VLM code 

in determining flap effectiveness, a reference value for the 

derivative  ��µ2 is computed manually according to the 
procedure outlined in [7], [8] which uses the equation: 
 

��µ2 � ¶�  �¨µ2 �! ·¸±�¹! ·º±�¹� g!®»2¼½¸!®»2¼½º
h                    (27) 

where: 

- Coefficient ¶� is the flap span factor 
- �¨µ2 is the increase in section lift coefficient with flap 

deflection 

- !��®�¾ and! �¨®�¾ are the lift-curve slopes of the wing and 
wing section, respectively, at the given Mach number 

- !#µ2¼·¸ !#µ2¼·º¿ is the ratio of three-dimensional flap-

effectiveness parameter to two-dimensional flap-

effectiveness parameter 

It can easily be checked that, for a rectangular wing with 

aspect ratio of 8, with no dihedral nor washout, and for which 

the trailing edge flap covers the whole span and 25% of the 

chord, the outlined procedure gives a value for ��µ2 around 
0.052 per degree. The value provided by the generalized VLM 

code is 0.054 per degree. The relative difference between the 

two values is 4%. 

 

 

Fig. 7  Lift distribution over a wing planform with 10° flap deflection 

 

 

Fig. 8 Effect of a 10° flap deflection on the lift curve 
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V. ACCURACY CHECK OF THE CLASSICAL VLM FOR FLAP AND 
AILERON DEFLECTION 

The purpose in this section is to evaluate the accuracy or 

limitations of the widely used classical VLM, which based on 

linearized theory, in modeling flap and aileron deployment. 

For this purpose, a separate MATLAB code implementing the 

classical version of the VLM was also developed.  

Since any drawbacks that might be expected in regard to the 

classical VLM would most likely arise from the linearized 

theory approach, flaps and ailerons should be deployed at 

important angles for any limitations to appear.  Therefore, 

deflections angles up to 30° are imposed and values for 

aerodynamic coefficients such as lift coefficient ( ��), pitching 
moment coefficient at the aerodynamic center (��@¦), and 
rolling moment coefficient (+¨) are compared.  
Numerical results for a rectangular wing an aspect ratio of 8 

and a washout of -4° are given in Fig. 9 and 10. A lattice of 8 

chordwise rows and 20 spanwise rows of panels was used. 

Coefficients  ��  and  ��@¦ are drawn as functions of flap 
deflection angle, with the flap span equal to that of the wing 

and its chord occupying 25% of the wing chord. The results 

show that the classical vortex-lattice method does not give 

accurate values for the aerodynamic coefficients for flap 

deflection angles higher than 10°. There is a 24% relative error 

in the lift coefficient and a 30% error in pitching moment 

coefficient at the mean aerodynamic center for a flap 

deflection angle of 30°. 

The rolling moment coefficient and ��@¦  are computed as a 
function of aileron deflection. The results presented in Fig. 11 

and 12 correspond to the same rectangular wing of the 

previous case, but with ailerons deflected instead of flaps. The 

ailerons have a chord ratio of 25%, a span ratio of 40% and 

their outer edge at wing tip. Coefficients ��@¦ and �¨ are 
plotted and the results show that the classical VLM lacks 

accuracy for aileron deflection angles greater than 10°. The 

discrepancy in �¨ is about 30% for a 30° aileron angle. 
 

 

Fig. 9 Classical VLM: error in lift coefficient as function of flap 

deflection 

 

Fig. 10 Classical VLM: error in ��@¦ as a function of flap deflection 
 

Overall, the classical VLM has proven to be highly accurate 

when no flap or aileron is deployed. The numerical values 

given by this method are within 1% of the ones provided by 

the generalized VLM. The classical VLM is more than 

adequate when dealing with normal wing geometric 

parameters such as section camber, taper, washout, sweep, and 

dihedral. But the advantage the generalized VLM has is that it 

can accurately handle mobile surface deflection at high angles. 

All the results presented so far are based on the wake 

condition shown in Fig. 4 with b$ � #. Vortex legs leaving 
the wing the trailing edge are initially curved and then become 

straight and parallel to the free stream velocity. Such choice is 

believed to give better results than other frequently used wake 

models [2] and has proven its accuracy in our computations. 

Nonetheless, an investigation of the effect of wake geometry 

on the values of the aerodynamic coefficients is worth 

considering. This is done in the following section. 

 

 

Fig. 11 Classical VLM: error in ��@¦ as a function of aileron 
deflection 
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Fig. 12 Classical VLM: error in rolling moment coefficient as a 

function of aileron deflection 

VI. EFFECT OF WAKE GEOMETRY 

In order to investigate the dependence of the solution on 

wake shape, four different cases are considered (Fig. 13): 

 

 

Fig. 13 Prescribed wake shapes 

 

-  Shape (a): the trailing vortex legs leave the trailing edge 

as straight segments extending to infinity parallel to the 

free stream velocity.  

- Shape (b): the trailing vortex legs leave the trailing edge 

as straight segments extending to infinity parallel to the 

wing centerline. 

- Shape (c): the vortex legs follow a curved path whose 

initial slope is that of the mean camber line at the trailing 

edge, then become straight an parallel to the free stream 

velocity. 

- Shape (d): the trailing vortex legs leave the trailing edge 

as straight segments extending to infinity having the slope 

of the mean camber line at the trailing edge. 

The four different wake shapes are applied to the previously 

considered wing with aspect ratio of 8, a taper ratio of 0.4, a 

washout of -4.5° and no dihedral or sweep at the quarter chord 

[6]. A lattice of 10 chordwise rows and 40 spanwise rows of 

panels was used in computing the lift coefficient and lift-to-

drag ratio at an angle of attack of 4°. The results 

corresponding to the four wake geometries are given in Table 

II along with reference experimental ones. All the computed 

values are within a margin of less than 1% of the reference 

experimental values. These results show that the wake 

geometry has practically no effect on the aerodynamic 

coefficients. 

 
TABLE II 

EFFECT OF WAKE SHAPES ON KEY AERODYNAMIC COEFFICIENTS 

Wake shape a b c d Experimental [6] �� 0.539 0.538 0.539 0.537 0.54 ² ³⁄  27.71 27.73 27.81 27.84 27.8 

VII. CONCLUSION 

A generalized VLM where the lattice takes the shape of the 

wing mean camber surface and which does not adopt the 

linearized theory approach has been formulated. A MATLAB 

code, implementing this formulation, has been developed and 

validated by comparing computational results to several cases 

of published numerical and experimental values. A second 

code implementing the classical vortex lattice method based 

on linearized theory was developed and an evaluation of the 

accuracy of the classical method was carried out by comparing 

values given by the two codes. It is shown that the classical 

vortex lattice method gives good results for plan forms with 

standard values of dihedral, washout, taper, and twist in the 

clean configuration. It has also proven to be fairly accurate for 

low flap and aileron deflection angles not exceeding 10°. 

However, a relative error of 30% in rolling moment 

coefficient is recorded at an aileron deflection of 30° and an 

error of 24% in lift coefficient is obtained at a 30° flap 

deflection angle. These errors are attributed to the linearized 

theory approach upon which is based the classical vortex 

lattice method. The effect of wake geometry on key 

aerodynamic coefficients was also studied and the findings 

indicate that the wake geometry had little effect on these 

coefficients.  

The accuracy of the generalized vortex lattice method 

presented in this paper makes it very useful in aerodynamic 

studies dealing with control surface deflection such as the 

study of longitudinal static stability and control of wing-

horizontal tail or Canard-wing-horizontal tail combinations. 

An extension of the present code which would allow for such 

lifting surface combinations is being considered. An 

immediate and easier extension of the present work is to allow 

for variable sweep and washout, and in particular, the study of 

localized twist near the wing tip instead of twisting the whole 

wing. The newly formulated method can also be used to 

provide numerical data for parameters such as Oswald 

efficiency factor and variation of downwash angle with angle 

of attack for wings with complex geometries and mobile 

surface deflection. It can also be oriented toward the 

computation of a number of stability derivatives by allowing 

the wing or wing-stabilizer combination to pitch, yaw, and 

roll. 
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