
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:9, 2014

3029


Abstract—We present our approach on using continuous delivery

pattern for release management. One of the key practices of agile and
lean teams is the continuous delivery of new features to stakeholders.
The main benefits of this approach lie in the ability to release new
applications rapidly which has real strategic impact on the
competitive advantage of an organization. Organizations that
successfully implement Continuous Delivery have the ability to
evolve rapidly to support innovation, provide stable and reliable
software in more efficient ways, decrease the amount of resources
need for maintenance, and lower the software delivery time and costs.
One of the objectives of this paper is to elaborate a case study where
IT division of Central Securities Depository Institution (MKK) of
Turkey apply Continuous Delivery pattern to improve release
management process.

Keywords—Automation, continuous delivery, deployment,
release management.

I. INTRODUCTION

USINESSES need to respond ever faster to new
opportunities. They also need to evolve rapidly in order to

maintain a competitive advantage. For many organizations,
their ability to do so is reliant on the software that supports
their business. In fact, most CEOs were looking to use
technology to gain both efficiency and differentiation
simultaneously [1].

In the fall of 2011, Forrester Consulting conducted in-depth
surveys with 325 business and IT professionals. Forrester
found that most of these companies are not able to deliver new
custom software solutions as fast as business leaders need
them. According to the survey a major reason for this is that
they have a low level of maturity when it comes to software
delivery processes. As a result, most of the companies are not
able to use their software development capacity to drive their
business, and they are not able to release new applications to
support their businesses as fast as they would like [2].

IT organizations face two different and conflicting
pressures. They need to respond rapidly to a changing
business environment and deliver high quality software and
services fast. This is the capability of an IT organization and is
called “performance” which is the ability to deliver more with
less.

On the other hand, IT organizations need to meet the
Service Level Agreements (SLA) and regulatory requirements,
support complex and interdependent systems, protect the
stability of the live environment, and manage risks to the

A. Maruf Aytekin is with Release Management Team atCentral Securities

Depository Institution (MKK), Istanbul, Turkey (phone: +90-212-334-5700;
fax: +90-212-334-5757; e-mail: maruf.aytekin@ mkk.com.tr).

business sufficiently. Thus the other key capability of an IT
organization is “conformance” which is the ability to
adequately manage risks to the business.

The apparent conflict between these two requirements —
performance and conformance— is most strongly felt during
releases. Releases are often painful and risky affairs, at worst,
they can result in service interruptions and end in a roll back,
at best, people lose their evenings, mornings, or weekends [3].

In this paper, we discuss the release management model
with continuous delivery to enable IT organizations to achieve
both performance and conformance by mitigating the risks so
that releases become a routine, push-button event.

This paper has the following structure: Section II will
briefly discuss different background concepts and definitions.
In Section III we introduce process of release management
from the development to production followed by a concrete
case study in Section IV which also describes how we applied
this approach in our practical software development life cycle.
An evaluation of this approach and future work are discussed
in Section V.

II. BACKGROUND

For many organizations, release management is not critical
only for development and deployment practices; but also for
doing business. In most organizations, the delivery of software
is a time consuming, stressful and costly process. As soon as
an application goes live, issues pop up, forcing the IT
organization into another costly release cycle. A software
release is typically a risky, unreliable procedure that costs
businesses both time and expense. The common causes of this
problem is infrequent releases, manual delivery process,
manual data migrations and database updates, manual
configuration changes, poor collaboration between teams and
team members, and lack of integration tests.

Frequent integration has proven so successful over time that
it is now a mainstream development practice known as
Continuous Integration (CI). However, since CI is focused on
development, it can only benefit a fraction of the end-to-end
release process, which remains a high-risk, labor-intensive
affair in a majority of IT organizations [4]. Continuous
Delivery (CD) is a method that automates the delivery process
of the release, lowers the risks, and minimizes manual affairs
and requires the creation of an automated deployment pipeline
to release software rapidly and reliably into production.

In the following subsections, we will give brief definition of
Release Management, CI, and CD processes.

A. Maruf Aytekin

Release Management with Continuous Delivery:
A Case Study

B

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:9, 2014

3030

A. Release Management

Information Technology Infrastructure Library (ITIL)
defines release management as the process responsible for
planning, scheduling and controlling the movement of releases
to test and live environments. The primary objective of release
management is to ensure that the integrity of the live
environment is protected and that the correct components are
released [5].

B. Continuous Integration

CI is a software development practice where members of a
team integrate their work frequently. Usually each person
integrates at least daily - leading to multiple integrations per
day. Each integration is verified by an automated build to
detect integration errors as quickly as possible. Many teams
find that this approach leads to significantly reduced
integration problems and allows a team to develop cohesive
software more rapidly [4].

C. Continuous Delivery

CD is a software deployment the continual delivery of code
to an environment once the code is ready to ship. CD requires
creating a “Continuous Delivery Pipeline” which sometimes
called “Deployment Pipeline”. With deployment pipeline
delivering the code to various environments, feeding the
business logic tests, and providing feedback to the developers
become a push button event.

III. SOFTWARE RELEASE MANAGEMENT

An effective release management process lowers the risk
and creates a reliable procedure to protect the integrity of
production and deliver high quality software and services fast
and also ensures businesses get valuable feedback quickly.
The key to achieving these goals is to improve the process of
software release by using continuous integration and
continuous delivery [6], [7].

A. Continuous Integration Revisited

The traditional workflow of CI process can be summarized
as follows. Project source code and all resources are being
managed in a Source Code Management (SCM) tool to be able
to trace the changes made to them over time. A member of
development team checks out the copy of the software. He
makes some changes to this local copy, makes a local build
and runs local development tests. After completing this local
verification and test process, he commits the code back to the
SCM tool. A CI server is used to integrate all changes from
members of development team. CI server makes a build to
integrate changes from development team to see whether the
software builds successfully or not. The build process might
contain automated integration tests and code analysis and
validation checks to ensure that committed code conforms to
common code conventions. If there are build errors or
integration test failures, build process is stopped and a
notification being sent to development team. It is the
committer’s responsibility to fix the erroneous code as soon as
possible.

Martin Fowler defines the key practices that make up
effective CI as follows [7]. An effective CI system must use a
single source code repository and a release opening strategy
must be established such as Branch for Testing Model (BTM)
[8]. Everyone in the development team should commit to the
mainline every day and each commit should build the mainline
on the CI server. Builds and tests must be automated and be
fast. Tests should be executed in a clone of the production
environment. Latest build artifacts and executable must be
available to everyone. Development team members and
counter parties must be able to see what’s happening. It is
essential that all manual processes need to be avoided in any
of CI steps.

B. Continuous Delivery Pipeline

Deployment pipeline is an automated manifestation of your
process for getting software from version control system into
hands of your users [9]. Deployment pipelines are the central
part of Continuous Delivery [10]. A deployment pipeline
creates visibility, provides control and complete traceability
over the delivery process of the software, and enables
collaboration by providing instant feedback on the production
readiness of the software. It also provides control over the
delivery process by enabling developers, testers, and
operations teams to perform push-button releases of any
chosen version of an application into the managed
environments. Thus the delivery process can be audited from
check-in to release.

The first stage of a deployment pipeline (see Fig. 1), known
as the commit stage, is triggered every time a team member
commits a change into the SCM. CI server checks out the
committed code and compiles it, runs unit tests and integration
tests, and makes code analysis using related tools on it in the
commit stage and builds the application binaries and packages.
The commit stage provides binaries for later stages. If this
stage passes, further stages can be triggered automatically
such as automated functional acceptance or capacity tests.

 The next stage of a deployment pipeline is the deployment
stage. A selected build can be deployed into testing or live
environments at this stage. Deployment of the binaries,
configuration changes, and database updates to the
environments expected to be executed automatically without a
manual intervention. Deploying into live environment is
usually the final stage in a pipeline [11].

IV. CASE STUDY

The case study presented in this paper describes continuous
delivery practice we use to manage release and deployment
process as a part of the software development life cycle. As IT
department of MKK, we need to continuously push new
features into multiple test environments, around 40, every day
to support our agile software development [12] lifecycle and
be able to make changes to the live environments. Release
management process plays a critical role in order us to deliver
high quality software and services, lower the development
costs, minimize the risk of release failures, and provide faster
feedback loops to the business.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:9, 2014

3031

In the following subsections, we briefly describe different
activities involved in our release and deployment management

process.

Fig. 1 Continuous Delivery Pipeline

A. CI Process

The CI process is supported by the Jenkins [13] which is an
open source continuous integration server and configurable via
a Web interface. Its functionality is extendable via plugins and
allows integration with SCM systems. Build jobs are at the
heart of the Jenkins build process. A Jenkins build job is a
particular task or step in the build process. This may involve
simply compiling source code and running unit tests or you
might want a build job to do other related tasks, such as
running integration tests, measuring code coverage or code
quality metrics, generating technical documentation, or even
deploying application to a web server. CI process of a real
project usually requires many separate but related build jobs.
A build job can be triggered manually, based on a time trigger,
or based on an event, e.g., the completion of another job.
Jenkins CI server checks SCM on regular intervals for new
commits and triggers the related build job and starts the build
when there are detected changes. We use Subversion [14] as
SCM tool, FindBugs [15] to detect potential bugs in the code,
and Cobertura plugin [16] to report test coverage.

It is our organization’s policy that every software project
should be managed with Apache Maven [17] which is a
software project management and comprehension tool. Based
on the concept of a project object model (POM), Maven can
manage a project's build, reporting and documentation from a
central piece of information.

We use single subversion source repository to track code
and configuration changes. In the following subsections we
will describe the practices of continuous integration [18] we
follow in more details:

1. Maintain a Single Source Repository

A single source repository is maintained with subversion in
our organization.

2. Everyone Commits to the Mainline Every Day

Developers integrate their code often, at least few times a
day, to make sure the changes they have made did not break
the state of the software.

3. Every Commit Should Build the Mainline on an
Integration Machine

When a member of development team implements a task he
runs unit tests locally and commits the changes to SCM. The
development team has access to the entire testing tool chain to
validate their updated implementation before committing.
When the code is committed CI server detects the commit and
starts a new build automatically.

4. Establish a Release Opening Strategy

We use Common Branching Patterns [19] as our release
strategy. The typical procedure is as follows: Developers
commit day-to-day changes to /trunk such as new features,
bug fixes etc. When the team thinks the software is ready for
release (say, a 1.0 release), the trunk is copied to a “release”
branch. /trunk might be copied to /branches/1.0. Team
members continue to work in parallel. One team begins
rigorous testing of the release branch, while another team
continues new work (say, for version 2.0) on /trunk. If bugs
are discovered in either location, fixes are ported back and
forth as necessary. At some point, however, even that process
stops. The branch is “frozen” for final testing right before a
release. The branch is tagged and released. When testing is
complete, /branches/1.0 is copied to /tags/1.0.0 as a reference
snapshot. The tag is packaged and released to customers. The
branch is maintained over time. While development team
works continuously on /trunk for version 2.0, bug fixes
continue to be ported from /trunk to /branches/1.0. When
enough bug fixes have accumulated, management may decide
to do a 1.0.1 release: /branches/1.0 is copied to /tags/1.0.1, and
the tag is packaged and released. This entire process repeats as

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:9, 2014

3032

the software matures: when the 2.0 work is complete, a new
2.0 release branch is created, tested, tagged, and eventually
released. After some years, the repository ends up with a
number of release branches in “maintenance” mode, and a
number of tags representing final shipped versions.

Maven release plugin [20] is used to manage this process to
save a lot of repetitive, manual work and decrease release
related errors.

5. Automate the Build

Builds are started on CI server automatically as soon as a
change detected on SCM.

6. Automate Testing

Unit tests [21] are executed automatically during the build
process by Maven and coverage reports are generated by
Jenkins CI plugins.

7. Automate CodeQuality Checks

Findbugs, a code analysis tool, is run automatically during
the build to locate potentially vulnerable code and security
flaws. It looks for instances of bug patterns and code instances
that are likely to be errors. Moreover PMD [22], a source code
analyzer, is used to scan source code and look for potential
problems like; possible bugs, dead code, suboptimal code,
overcomplicated expressions, and duplicate code (CPD). If an
error is found during the build, CI server stops the build and
sends an error-report to counter parties.

8. Keep theBuild Fast

We continuously monitor the build process and make
improvements. We configured and installed Jenkins CI to
support distributed builds [23] in the "master/slave" mode,
where the workload of building projects are delegated to
multiple "slave" nodes, allowing a single Jenkins installation
to host a large number of projects, or to provide different
environments needed for builds/tests.

9. Test in a Clone of the Production Environment

The same architecture with production environments is used
as staging environment. The integrations with 3rd parties are
being simulated for test environments also. We leveraged a
test data management strategy [24] to subset the production
data, while masking the sensitive information, to feed test
environments on a regular basis.

10. Make it Easy for Anyone to Get the Latest Executable

Anyone involved with a software project can get the latest
or previous build artifacts and run it for demonstrations,
exploratory testing, or just to see what changed recently.
Jenkins CI has a Web interface to provide all the information
about the build stats, build history, and build artifacts as well
as released artifacts.

11. Everyone Can See What's Happening

Jenkins CI Web interface is used to communicate the state
of the mainline build. Everyone can easily see the state of the
build system and the changes that have been made to it. We
hooked up a continuous display to the build system - lights

that glow green when the build successful or red if failed.

12. Automate Deployment

We have development, integration, staging, and production
environments to apply CI. We move release artifacts between
these environments multiple times a day. We developed
custom deployment scripts to manage the deployment process
between these environments. These scripts and deployment
procedure is used for both test and production environments.
Automation and automated deployment is described in more
detail in the next section.

B. Automation

In order to build an effective release management system
with continuous delivery, deployment step of continuous
delivery pipeline needs to be automated. Deployment process
involves installing applications, configuring resources and
middleware components, starting/stopping components,
configuring the installed application for different
environments [25].

We will describe automation of deployment activities in the
following subsections under three categories; configuration
management, change management, and deployment process.

1. Automate Configuration Management

Continuous delivery pipeline relies upon good configuration
management. We follow these principles to manage
configuration:

a) Get Everything under Version Control

Good configuration management entails having everything
required to create and test your application in version control.
We have source code, build and deployment scripts,
management scripts, automated test scripts, database change
scripts, and application configuration files under version
control. During the deployment and release, CI server checks
out the necessary files from SCM and executes necessary
steps.

b) Automate Dependency Management

The dependency management is a mechanism for
centralizing dependency information. Good configuration
management requires software dependencies, such as libraries
and components are managed in an automated fashion. We use
maven dependency mechanism [26] to automate dependency
management. We have a set of projects that inherits a common
parent configuration (POM) and we put all the information
about the dependency in the common parent configuration and
have simpler references to the artifacts in the child
configurations.

We implemented our local-corporate build artifact
repository as a proxy by using Apache Archiva [27] and
dependencies and libraries are served from this central
repository. When a developer declares a new dependency,
maven tries to fetch the dependency from local-corporate
repository. If the dependency exists in local-corporate
repository, it is provided to the developer, if not, repository
manager requests the dependency from remote repositories

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:9, 2014

3033

and delivers it to the developer while catching a copy for the
future requests (see Fig.2). This process is managed behind the
scene for dependencies and transitive dependencies by Maven
automatically.

c) Automate Infrastructure Management

Infrastructure and environments should be provisioned and
managed using a fully automated process as a practice of good
configuration management process. We use virtualization to
create environments from a set of baseline virtual machine
images and custom scripts to configure these environments.

Fig. 2 Dependency Management

d) Automate Database Management

Changes need to be propagated from development to test,
and ultimately to production in a controlled and consistent
manner. Database is versioned [28] to manage this process.
Therefore we have the ability to recreate a database at any
point in time. Versioning the database is particularly important
when there is a need for creating new environments.

We generated a baseline schema; any changes to the schema
require a schema change script. The schema and change
scripts are managed with SCM. We automate database updates
with dbmaintain [29]. CI server checks out the change scripts
and uses dbmaintain to incrementally apply the change scripts
to database during the deployment.

e) Automate Application Configuration Management

Application configurations are kept in SCM and managed
automatically. We have common configuration files in SCM
as templates and generate configuration files for a specific
environment from these templates. Generated configuration
files are packaged and deployed to local-corporate repository
based on application version. These configuration files can
then be retrieved based on version number during the
deployment.

2. Automate Change Management

Uncontrolled changes are a leading cause of downtime in
live environments. It is essential to lock down staging and
production environments to ensure that unauthorized changes
cannot be made to them. We keep all sources and
configuration files in SCM and changes are controlled with
pre-commit hook scripts. When a change needs to be

introduced procedure followed is described next. Change
requests, tasks, or bug fixes come to development team with
an issue from issue tracking system JIRA [30]. The issue
needs to be assigned to a developer and be fixed for a release
version in order to commit a change about this issue to SCM.
When a developer tries to commit a change, a pre-commit
hook script runs to verify the commit rights of the developer
and status of the issue to make sure the changes are allowed to
be committed for the specified version of software.

The deployment process is also protected with authorization
mechanism. Releases to development and test systems occur
on scheduled time intervals or can be triggered by users who
are assigned release management role.

Changes are tracked with software versioning model.
Software versioning is the process of assigning either unique
version names or unique version numbers to unique states of
computer software [31]. We have a version numbering schema
in our organization that uses a five-sequence identifier;
major.minor[.maintenance[.bugfix[-build]]]. We version
software applications during the development and releases
according to this schema and all artifacts are stored in local-
corporate repository based on version numbers.

In order to trace released versions of software applications
we developed custom scripts to create an “organizational
release information page” dynamically. The organizational
release information page is accessible by everyone and
displays the environment name, release time for every
environment, and version number of the current release with a
link to the build on CI server and SCM changes. We are able
to trace the changes from released versions back to a change
set in SCM by using this web page.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:9, 2014

3034

3. Automate Deployment Process

We developed custom scripts to distribute deployment
artifacts between the stages of deployment pipeline, manage
and configure the environments during the deployment
automatically. Deployable artifacts are being created once in
the build stage of deployment pipeline and the same artifacts
are distributed between all stages of the deployment pipeline.
This process executes as follows; when a release job on CI
server is triggered, it retrieves the application artifacts from
local-corporate repository, connects to the database, executes
database update scripts, stops the application, installs the new
version of the application to target environment, configures
target environment, and starts the application. Deployment
scripts connect to the server and monitor the log files for
errors during the start. If an error found, deployment is
stopped and an error report is sent to counter parties, if
environment starts successfully, a successful release report is
sent.

We use the same deployment mechanism to deploy to every
environment. This is essential to minimize deployment related
issues and provide consistency. In order to make zero-
downtime deployments we built high available middleware
architecture [32].

4. Monitor and Improve

Delivery process is continuously measured and improved.
We gather metrics as part of the release management process,
such as; application build times, frequency of deployments,
time taken to perform deployments, time to detect an incident,
time to repair an incident, what proportion of changes are
successful, and so forth.

Using these metrics, we measure the success of any changes
we make, analyze successful and unsuccessful changes to look
for patterns, determine the root causes of unsuccessful
changes, and categorize them.

V. CONCLUSION AND FUTURE WORK

We have presented an approach to implement a release
management process with continuous delivery in order to
decrease the amount of resources needed and software
delivery time while delivering software applications and
services rapidly.

Without a deployment pipeline implementation, a manual
deployment to only one environment used to be completed in
about 1 man-day. This includes application installation,
configuration changes, database updates, and restart of the
application steps. In order to get a successful release, endless
emails being sent, tickets being raised, or other inefficient
forms of communication required and of course this becomes
a major source of inefficiency. We have implemented CI in
2008-2009 periods and completed the implementation and
automation of all stages of deployment pipeline in 2010.
Hence the problems with releases were completely removed
with deployment pipeline implementation and the release time
for an environment decreased to around 5-10 minutes. This
improved our software development life cycle and decreased
deployment related errors that cause release failures radically.

The number of bugs and issues raised for applications in years
is reciprocally correlated with the maturity level of continuous
delivery process. Fig. 3 shows the number of bugs introduced
in years for Central Depository System (CDS) application.

Visibility of the software delivery process is increased,
everyone can see which builds are available and they have the
ability to easily deploy any version of the software into any
environment at the push of a button.

Moreover, deployment pipeline allows testers, operations or
support personnel to self-service the version of the application
they want into the environment of their choice. Testers can
select older versions of an application to verify changes in
behavior in newer versions. Support staff can deploy a
released version of the application into an environment to
reproduce a defect. Operations staff can select a known good
build to deploy to production as part of a disaster recovery
exercise. Therefore, support requests and reported issues in
regards to software maintenance also decreased around 95%
since collaboration is automated.

Fig. 3 Number of Bugs Reported for CDS

In the future we will look into more detail at automating

infrastructure management, and, in particular creating and
configuring lightweight, reproducible, and portable
development environments. Number of bugs and issues can be
decreased for software applications and caught at early stages
of development life cycle by improving test automation.

REFERENCES
[1] How to drive innovation and business growth, Leveraging emerging

technology for sustainable growth, PwC Advisory Oracle practice
(2012) (Online) http://www.pwc.com/en_US/us/supply-chain-
management/assets/pwc-oracle-innovation-white-paper.pdf Retrieved:
11.08.201.

[2] Continuous Delivery: A Maturity Assessment Model, A Forrester
Consulting Thought Leadership Paper Commissioned By Thoughtworks.
(March 2013) (Online) http://info.thoughtworks.com/Continuous-
Delivery-Maturity-Model.html. Retrieved: 15.08.2013.

[3] J. Humble, Build and Release Principal, Agile Release Management:
Towards Frequent, Low Risk Releases, ThoughtWorks Studios. (14 July
2010) p1 (Online) http://www.kn-portal.com/fileadmin/xxx/
AgileReleaseManagement-whitePaper.pdf . Retrieved: 20.08.2013.

[4] S. Smith, Introducing Continuous Delivery, (07.04.2014), (Online)
http://java.dzone.com/articles/introducing-continuous. Retrieved:
08.04.2014.

[5] Erenkrantz, J. R.(2003) Release Management Within Open Source
Projects. In: Proceedings of the 3rd Open Source Software Development
Workshop. Portland, Oregon, USA, May 2003, S. 51–55.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:9, 2014

3035

[6] Introducing Continuous Delivery in The Enterprise, Xebia Nederland
(Online) http://continuousdelivery.xebia.com/sites/default/bestanden/
nl/Whitepaper%20Xebia%20Continuous%20Delivery.pdf. Retrieved:
15.08.2013.

[7] M. Fowler, Continuous integration, (2006, May) (Online)
http://martinfowler.com/articles/continuousIntegration.html Retrieved:
20.08.2013.

[8] D. Sujoy, R. Amit Kumar, and B. Uttam, Release Management for
Parallel Development: A Case Study, Lecture Notes on Software
Engineering, Vol. 1, No. 1, February 2013.

[9] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment, Addison-Wesley
Signature Series, Automation 2011 p105-106.

[10] M. Fowler, Deployment Pipeline, (30 May 2013) (Online)
http://martinfowler.com/bliki/DeploymentPipeline.html Retrieved:
20.08.2013.

[11] J. Humble, D. Farley, Continuous delivery: reliable software releases
through build, test, and deployment automation. ISBN 978-0-321-
60191-9. – Chapter 1.

[12] Abrahamsson, P., Salo, O., Ronkainen, J., &Warsta, J. (2002). Agile
Software Development Methods: Review and Analysis. VTT
Publications 478.

[13] Jenkins CI – Meet Jenkins, Available at https://wiki.jenkins-
ci.org/display/JENKINS/Meet+Jenkins.

[14] Subversion. Available at http://subversion.apache.org/.
[15] FindBugs, Find Bugs in Java Programs, Available at

http://findbugs.sourceforge.net/.
[16] Cobertura, A code coverage utility for Java, Available at

http://cobertura.github.io/cobertura/.
[17] Apache Maven, Available at http://maven.apache.org/.
[18] M. Fowler, Practices of Continuous Integration. (01 May 2006) (Online)

http://martinfowler.com/articles/continuousIntegration.html#PracticesOf
ContinuousIntegration. Retrieved: 18.02.2014.

[19] Common Branching Patterns, Version Control with Subversion For
Subversion 1.7 - Chapter 4, (Online) http://svnbook.red-bean.com/en/
1.7/svn.branchmerge.commonpatterns.html. Retrieved: 25.03.2014.

[20] Maven Release Plugin, Available at http://maven.apache.org/maven-
release/maven-release-plugin/index.html. Retrieved: 25.03.2014.

[21] Junit, A programmer-oriented testing framework for Java, Available at
http://junit.org/

[22] PMD, Source Code Analyzer, Avaliable at http://pmd.sourceforge.net/
[23] Distributed Builds with Jenkins CI, (Online) https://wiki.jenkins-

ci.org/display/JENKINS/Distributed+builds. Retrieved: 26.03.2014.
[24] 5 Best Practices for Test Data Management, Kimberly Madia, (July 26,

2013) (Online) http://ibmdatamag.com/2013/07/5-best-practices-for-test-
data-management/ Retrieved: 26.03.2014.

[25] R. van Loghem , So What Is A Deployment Really, (July 8, 2009)
(Online) http://blog.xebia.com/2009/07/08/so-what-is-a-deployment-
really/. Retrieved: 27.03.2014.

[26] J. Casey, V. Massol, B. Porter, C. Sanchez, J. V. Zyl, Better Builds with
Maven, The How-to Guide for Maven 2.0, 2008 p61

[27] Apache Archiva, The Build Artifact Repository Manager, Available at
http://archiva.apache.org/.

[28] K. Scott Allen, Versioning Databases – The Baseline, (February 1,
2008), (Online) http://odetocode.com/blogs/scott/archive/2008/01/31/
versioning-databases-the-baseline.aspx. Retrieved: 26.03.2014.

[29] Dbmaintain, Tool for automating the deployment for relational
databases, Available at http://www.dbmaintain.org/overview.html

[30] JIRA- issue tracking tool, Atlassian, Available at
https://www.atlassian.com/get-jira .

[31] Wayne A. Babich. Software Configuration Management. Addison-
Wesley, 1986. 162 pp.

[32] Clustering/Session Replication, Apache Tomcat Version 7.0.52, Feb 13
2014, (Online) https://tomcat.apache.org/tomcat-7.0-doc/cluster-
howto.html. Retrieved: 31.03.2014.

