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Abstract—Artificial Neural Networks (ANN) trained using back-

propagation (BP) algorithm are commonly used for modeling 

material behavior associated with non-linear, complex or unknown 

interactions among the material constituents. Despite multi-

disciplinary applications of back-propagation neural networks 

(BPNN), the BP algorithm possesses the inherent drawback of 

getting trapped in local minima and slowly converging to a global 

optimum. The paper present a hybrid artificial neural networks and 

genetic algorithm approach for modeling slump of ready mix 

concrete based on its design mix constituents. Genetic algorithms 

(GA) global search is employed for evolving the initial weights and 

biases for training of neural networks, which are further fine tuned 

using the BP algorithm. The study showed that, hybrid ANN-GA 

model provided consistent predictions in comparison to commonly 

used BPNN model. In comparison to BPNN model, the hybrid ANN-

GA model was able to reach the desired performance goal quickly. 

Apart from the modeling slump of ready mix concrete, the synaptic 

weights of neural networks were harnessed for analyzing the relative 

importance of concrete design mix constituents on the slump value. 

The sand and water constituents of the concrete design mix were 

found to exhibit maximum importance on the concrete slump value.  

 

Keywords—Artificial neural networks, Genetic algorithms, 

Back-propagation algorithm, Ready Mix Concrete, Slump value. 

I. INTRODUCTION 

EADY Mix Concrete (RMC) has emerged as the 

preferred choice among contractors and builders for 

reinforced concrete construction, primarily due to its 

customized combination of constituents resulting in an 

engineered premium quality concrete mix. With the 

adaptability to be transported to congested sites and better 

conditions of quality control, RMC has given an impetus to 

the infrastructure growth providing both reliability and 

durability of construction. Regardless of the sophistication of 

the mix design procedure used and other considerations, such 

as cost, a concrete mixture that cannot be placed easily or 

compacted fully is not likely to yield the expected strength and 

durability characteristics [1]. The ease, with which concrete 

can be placed, compacted and finished at site with sufficient 

resistance to segregation, is defined as the workability of 

concrete.  

 
Vinay Chandwani is a Ph.D Research Scholar in the Department of Civil 

Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, 
Jaipur, Rajasthan, India (mobile: (+91) 9828022916, e-mail: 

chandwani2@yahoo.com).  

Vinay Agrawal is working as Assistant Professor in the Department of 
Civil Engineering, Malaviya National Institute of Technology Jaipur, JLN 

Marg, Jaipur, Rajasthan, India (e-mail: agrawal_vinay_2000@yahoo.com). 

Ravindra Nagar is working as Professor in the Department of Civil 
Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, 

Jaipur, Rajasthan (e-mail: ravindranagar@hotmail.com). 

The difficulty in measuring the mechanical work defined in 

terms of workability, the composite nature of the fresh 

concrete, and the dependence of the workability on the type 

and method of construction makes it impossible to develop a 

well-accepted test method to measure workability [2]. 

However, consistency of concrete is measured in quantitative 

terms using a widely used test called the Slump Test. 

Determination of concrete slump, is an important quality 

assurance parameter in RMC industry. It not only helps in 

assessing the shelf life of the RMC and the maximum transit 

time that a RMC can safely undertake without loss of 

flowability and pumpability, but also helps in customizing 

concrete to the type and need of construction activity and 

maintaining uniformity of concrete from batch to batch. 

The empirical formula in the form of regression equations 

based on experimental results, are commonly in use to judge 

the property of concrete based on its design mix constituents. 

However, these empirical relationships do not provide the 

desired prediction accuracy when there are number of 

variables influencing the concrete property whose interactions 

are non-linear, complex or unknown in nature. Artificial 

Neural Networks (ANN) inspired by the learning mechanism 

of the human brain, present a simplified approach for 

modeling unstructured material behavior problems. Modeling 

slump of concrete based on its design mix proportion is one 

such unstructured problem. In past decade ANN has been 

harnessed to predict the slump and strength of ready mix 

concrete containing retarders and high strength concrete 

containing silica fume and plasticizers [3], slump of Fly ash 

and slag concrete (FSC) [4], for modeling compressive 

strength and slump of high strength concrete (HSC) [5], to 

model the slump of high performance concrete and 

comparison of ANN with second order regression models [6] 

and for modeling slump of concrete based on its mix 

constituents using laboratory test results [7].  

Apart from the studies mentioned above, recent studies 

conducted for modeling the material behavior of concrete [8]-

[13], have harnessed the back-propagation (BP) algorithm 

trained artificial neural network. Despite back-propagation 

neural network’s (BPNN) popularity and wide range of 

applications, it is always faced with an inherent drawback of 

getting trapped at local minima even though there is much 

deeper minimum nearby and slow convergence rate. This 

drawback is attributed to the random draw of initial neural 

network weights and biases, which compels ANN to behave 

differently during each re-run of the network training 

incapable of finding satisfactory solutions. The stochastic 

search ability of genetic algorithms (GA) inspired by the 
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evolutionary processes, namely, natural selection and genetic 

variation, allows simultaneous search for optimal solutions in 

different directions, minimizing the chance of getting trapped 

in a local minimum. Recent studies harnessing genetic 

algorithms (GA) for evolving the initial weights and biases for 

neural networks [14]-[18], have shown that hybrid ANN-GA 

approach outperforms the prediction performance of the 

conventional BP training of neural networks. 

Despite a wide range of applications of hybridizing GA 

with ANN for evolving optimal initial weights and biases, GA 

has not been amalgamated with ANN for modeling the slump 

of concrete. The hybrid methodology presented in the paper 

harnesses the genetic algorithms (GA) stochastic global search 

for evolving the initial weights and biases and the local search 

BP algorithm for fine tuning of GA evolved weights and 

biases for developing a robust ANN model. The hybrid ANN-

GA methodology has been used for modeling the slump of 

ready mix concrete based on its design mix constituents viz., 

cement, pulverized fly ash, sand, coarse aggregate (20 mm), 

coarse aggregate (10 mm), admixture and water. The synaptic 

weights of the trained ANN-GA model have been used for 

assessing the relative importance of each constituent of the 

RMC on the slump value.  

The research paper has been divided into sections. Data 

collection is dealt in Section II. Section III describes the 

methodology of determining ANN architecture, its subsequent 

training using GA evolved weights and biases and statistical 

performance metrics. Section IV and V present the results and 

their discussions. Section VI deals with evaluating relative 

importance of concrete’s design mix proportion on its slump 

value and Section VII elaborately deals with the conclusions 

of the study.  

II. MATERIAL  

A. Exemplar Data for Neural Network Training, Validation 

and Testing 

ANN is a learning paradigm inspired by the approach in 

which information is processed by the human brain. The 

neural networks imbibe the subtle relationships between and 

input and output data pairs and are able to automatically 

construct a relationship based on the flow of information 

through the network. The neural networks are therefore data 

intensive and rely heavily on the quality and quantity of 

data/information. The exemplar patterns for neural network 

modeling of concrete slump were collected from a local RMC 

plant. The data comprised of concrete design mix proportions 

and their corresponding slump test values. The data consisted 

of 565 concrete design mixes having different proportions of 

cement, pulverized fly ash (PFA), sand, coarse aggregate (20 

mm), coarse aggregate (10 mm), admixture and water content 

in kg/m
3
. The corresponding slump values were measured and 

reported in mm. The data were randomized and separated into 

three disjoint datasets viz., training, validation and test data-

sets. The training dataset comprised of 70% data. The 

remaining 30% data were divided equally to form the 

validation and test datasets.  

III. METHODS 

In conducting the study, the Neural Network Toolbox and 

Global Optimization Toolbox included in the commercially 

available software MATLAB R2011b (Version 7.13.0.564) 

was used to implement the BPNN and GA respectively.  

A. Pre-processing of Data 

As discussed in the previous section that, exemplar data for 

modeling slump of concrete comprised of cement, PFA, sand, 

coarse aggregate 20 mm and 10 mm, admixture, water and 

slump value. Since the data consists of different constituents 

having different material properties and maximum-minimum 

range, it requires standardization of data through 

normalization in the range -1 to +1 or 0 to +1. This pre-

processing of data is preferably done to remove any inherent 

bias towards any variable, thereby ensuring the equal attention 

of the network toward all variables. Moreover, this facilitates 

the learning speed, as these values fall in the region of sigmoid 

transfer function where the output is most sensitive to the 

variations of the input values [19]. Linear scaling in the range 

-1 to +1 has been used in the present study having function 
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where normx is the normalized value of the variable x , maxx

and minx are the minimum and maximum values of variable x

respectively . 

B. Neural Network Architecture and Training Parameters 

ANN presents a computational counterpart to the human 

brain, with nodes representing the neurons and weighted 

connections between the nodes synonymous to the synapses 

between the biological neurons. Nodes or artificial neurons are 

the simple processing elements and are arranged in layers. A 

neural network can consist of several layers. Multi layer Feed-

forward neural networks (MFNN) that are commonly used for 

tasks associated with prediction and forecasting, consist of an 

“input layer”, “output layer” and a number of intermediate 

“hidden layer/s”. The feed-forward neural network is a fully 

connected network, allowing only connections in forward 

direction between the inter-layer neurons. 

The “input layer” consists of neurons which receive input 

information. In the present study, the “input layer” consisted 

of seven neurons viz., cement, PFA, sand, coarse aggregate 

(20 mm), coarse aggregate (10 mm), admixture and water 

content in kg/m
3
. The “output layer” consisted of only one 

neuron i.e. concrete slump value in mm. The number of 

hidden layers and hidden layer neurons depend of the 

complexity of the function to be approximated. Reference [20] 

claimed that a single hidden layer neural network with 

sufficient number of hidden layer neurons can approximate 

any functional relationship. Certain studies in the past have 

suggested the “thumb rules” for deciding the number of 

hidden layer neurons [21]-[24]. Nevertheless, the number of 

hidden layers and hidden layer neurons is decided by a trial 

and error process. In the present study, seven single hidden 
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layer neural network architectures of different complexities 

with hidden neurons varying from five to eleven have been 

trained and validated to select the optimal architecture. The 

neural network architecture with five hidden layer neurons for 

modeling slump of concrete is shown in Fig. 1. 

 

 

Fig. 1 Neural Network Architecture with five hidden layer neurons  

The input neurons receive the signal and passes on the 

weighted sum of all signals arriving at a single neuron through 

a transfer function. Introduction of transfer function adds non-

linearity into the network and helps it to learn the complex or 

nonlinear functional relationships among the input-output data 

pairs. In this study tangent hyperbolic transfer function is used 

to transfer the output at input neurons to the hidden layer 

neurons. For comparison of actual values with ANN predicted 

output, a linear transfer function has been adopted to transfer 

the information from hidden layer to the output layer. 

 The training of MFNN is undertaken by back-propagation 

(BP) algorithm. This type of neural network is commonly 

known as back-propagation neural network (BPNN). The BP 

algorithm is a gradient descent algorithm which attempts to 

minimize the error between the actual values and predicted 

outputs by sequential updating of neural network weights and 

biases. A suitable learning rate and momentum coefficient for 

BP algorithm helps in the convergence of the algorithm by 

iterative updating of weights and biases during each learning 

cycle. A large value of the learning rate speeds up the 

convergence but may lead the network to overshoot the global 

minima. To allow larger learning rate to speed up convergence 

without producing weight oscillations, momentum coefficient 

is incorporated in updating of synaptic weights. The 

momentum term effectively filters out the high frequency 

variations of the error surface in the weight space, since it 

adds the effect of the past weight changes on the current 

direction of movement in the weight space [25]. A suitable 

combination of learning rate and momentum coefficient helps 

in faster convergence of the BPNN. In the present study 

Lavenberg-Marquardt back-propagation algorithm has been 

used along with learning rate 0.45 and momentum coefficient 

0.85. Lavenberg-Marquardt back-propagation training 

algorithm is the fastest converging algorithm preferred for 

supervised learning. It can be regarded as a blend of steepest 

descent and Gauss–Newton method, combining the speed of 

Newton algorithm with the stability of the steepest descent 

method [26]. The algorithm has a dual way of approaching the 

solution to a function, behaving as steepest descent when the 

solution is far away from the local minimum and Gauss–

Newton when the solution is near to the local minimum.  

C. Training and Determination of ANN Using BP Algorithm 

 

Fig. 2 Neural Network training and validation using BP algorithm 
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The multiple neural network architectures created by 

varying the number of hidden layer neurons and its training 

parameters discussed in the previous section, were trained 

using Lavenberg-Marquardt BP training algorithm. Prior to 

training, the initial weights and biases were randomized and 

initialized in the range -0.5 to +0.5. The training dataset 

comprising of input-output data pairs were presented to the 

neural network and ANN predicted outputs were compared 

with actual outputs for computing the training error. In order 

to avoid over-fitting of the training data-set, early stopping 

technique was employed. Apart from monitoring the training 

error at each training cycle, validation error is also evaluated 

by presenting the validation data-set to the trained neural 

network. The training of neural network is terminated when 

the validation error tends to increase, although training error 

may continue to decrease. The ANN with least validation error 

is selected as the neural network model for modeling slump of 

concrete. Flow-chart of neural network training and validation 

using BP algorithm is shown in Fig. 2. In the present study the 

neural network architecture (7-9-1) with nine hidden layer 

neurons yielded the least validation error and is therefore 

chosen as the neural network model for modeling slump of 

RMC.  

D. Evolving Initial Neural Network Weights and Biases 

Using GA and Subsequent Training Using BP Algorithm 

Genetic algorithms (GA) are population based stochastic 

search and optimization algorithms inspired by Darwin’s 

“Survival of the Fittest” heuristic. Based on the evolutionary 

ideas of natural selection and genetics, they present a perfect 

blend of exploration and exploitation of the search space, to 

direct the search to the regions where there is maximum 

probability of finding a better solution. Compared with other 

traditional searching or optimization techniques such as hill-

climbing methods, which depend solely on local information 

to decide the best direction along which the next step should 

move, GAs use global information, perform parallel search 

and do not require local gradient information, which enable it 

to find globally optimal or near globally optimal solutions 

[27]. The gradient-free and parallel nature of search employed 

by GA gives it an edge over BP algorithm’s gradient decent 

technique to avoid falling into local minima and accelerated 

progress towards global optimum.  

The process of hybridizing GA with ANN constitutes of 

two stages viz., evolution of neural network initial weights and 

biases using GA and using these optimal weights and biases 

for training of ANN using BP algorithm. The weights and 

biases of neural network are initialized as genes of the 

chromosomes. The ANN is constructed and fitness of each 

chromosome is evaluated by presenting the ANN with the 

training input-output data pair and evaluating the root mean 

square error (RMSE) between the actual and the predicted 

outputs. The fitness function acts as measure of distinguishing 

optimal solution from numerous sub-optimal solutions by 

evaluating the ability of the possible solutions to survive or 

biologically speaking it test’s the reproductive efficiency of 

chromosomes. GA performs stochastic operations on the 

chromosomes through genetic operations viz., crossover and 

mutation and evolution operation viz., selection. By 

employing the selection operator, the fitter chromosomes are 

segregated from the chromosomes having less fitness, thereby 

improving the population fitness over successive generations.  

Crossover is a recombination operator that helps in 

producing new offspring by incorporating the strengths of the 

parent chromosomes thereby, enriching the population with 

better individuals. Crossover produces clones of good 

chromosomes by randomly choosing a cross site along the 

length of chromosome and following this cross site, swapping 

the genes across the two parent chromosomes to produce a 

better off-spring. Mutation introduces genetic diversity into 

the current population by randomly modifying its building 

blocks. It allows exploration of the entire solution space and 

prevents the algorithm to be trapped in local minima. The 

crossover and mutation operator operating together, create the 

next generation of population. The process is repeated till 

maximum generations or stalling of fitness function at a 

particular value is achieved. In the present study an initial 

population size of 50 chromosomes with roulette wheel 

selection strategy, scattered crossover operator with 

probability of crossover 0.9, uniform mutation with 

probability of mutation 0.01 and maximum number of 

generations 100 has been used.  

The neural network weights and biases evolved using GA 

are subsequently harnessed for training the ANN using BP 

algorithm. The ANN is initialized using GA evolved weights 

and biases and further fine tuned through BP algorithm 

training of ANN. The flow-chart of evolving weights and 

biases using GA and subsequent use of these weights and 

biases for ANN training is exhibited in Fig. 3. 
   

 

Fig. 3 Training of BPNN using GA evolved weights and biases 
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E. Statistical Analysis 

The performance of the trained BPNN and hybrid ANN-GA 

models were evaluated using five different statistical 

parameters. The statistical performance metrics include: root 

mean square error (RMSE), coefficient of correlation (R), 

Nash-Sutcliffe efficiency (E), mean absolute percentage error 

(MAPE) and normalized mean bias error (NMBE) given by: 
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where iT  and iP  denote the target or observed values and 

ANN predicted values and T  and P  represent the mean 

observed and mean ANN predicted values, respectively. N  

represents the total number of data. 

RMSE statistics computes the root mean square error by 

comparing the target or actual values with the predicted 

outputs. A lower RMSE indicates good prediction, but this 

statistic is biased towards to high error values. Coefficient of 

correlation (R) measures the degree of association between the 

two variables. The value of this statistic close to 1.0 indicates 

an almost perfect linear relationship between the actual and 

predicted values. The coefficient of efficiency (E) or Nash 

Sutcliffe efficiency [28] is a ratio of residual error variance to 

measured variance in observed data. A value close to unity 

indicates the accuracy of the model. MAPE statistics measure 

the mean of the relative absolute error divided by the observed 

value. A lower value of this statistic indicates better prediction 

accuracy. NMBE measures the ability of the model to predict 

a value which is situated away from the mean value. A 

positive NMBE indicates over-prediction and a negative 

NMBE indicates an under-prediction of the model [29]. A 

combined use of the performance metrics narrated above can 

provide an unbiased estimate for the prediction ability of the 

neural network models.  

 

IV. RESULTS  

As discussed in previous section that, hybridization of GA 

with ANN consisted of two stages. In the first stage, the 

evolutionary heuristic GA was harnessed for determining the 

optimal weights and biases for training ANN using BP 

algorithm. The GA performed 2000 function evaluations and 

took 39.7179 seconds to converge to optimal weights and 

biases in 39 generations (Fig. 4).  

 

Fig. 4 Fitness function versus generations 
 

In the second stage, the neural network architecture selected 

for modeling slump of concrete (7-9-1) was initialized with 

GA evolved weights and biases and trained using the BP 

algorithm. The hybrid ANN-GA was able to reach the desired 

performance goal 0.003 in 63 epochs taking 2.0124 seconds 

(Fig. 5). The same neural network architecture trained using 

BP algorithm initialized with a random draw of weights took 

1374 epochs and 50.903 seconds to reach the desired 

performance goal (Fig. 6).  

 

 

Fig. 5 Training of hybrid ANN-GA model 
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Fig. 6 Training of BPNN model 
 

TABLE I 

STATISTICAL PERFORMANCE OF ANN MODELS FOR TRAINING, VALIDATION 

AND TEST DATA-SETS 

Model 
RMSE 
(mm) 

R E 
MAPE 
(%) 

NMBE 
(%) 

Training      

BPNN 2.4942 0.9816 0.9625 1.2720 0.2497 

ANN-GA 1.9439 0.9885 0.9772 1.0013 0.0004 

Validation      

BPNN 3.6037 0.9453 0.8906 1.6755 0.1950 

ANN-GA 2.7176 0.9692 0.9378 1.2939 0.0138 

Testing      

BPNN 3.3873 0.9499 0.8948 1.5862 -0.5249 

ANN-GA 2.7436 0.9659 0.9370 1.3042 0.0531 

 

The trained BPNN and ANN-GA models were validated 

and tested. The results in terms of statistical performance 

metrics are exhibited in Table I. 

The trained models were also tested using the entire RMC 

data. Regression plots were developed for BPNN and ANN-

GA models between the actual and the predicted slump values 

and are shown in Figs. 7 and 8 respectively. The statistical 

performance for the entire data-set is tabulated in Table II.  

 

Fig. 7 Regression plot for BPNN model 

 

Fig. 8 Regression plot for ANN-GA model 
 

TABLE II 

STATISTICAL PERFORMANCE OF ANN MODELS FOR THE ENTIRE DATA-SET 

Model 
RMSE 

(mm) 
R E 

MAPE 

(%) 

NMBE 

(%) 

BPNN 2.8326 0.9735 0.9467 1.3797 -0.2570 

ANN-GA 2.4197 0.9804 0.9611 1.1346 0.0129 

V. DISCUSSIONS 

On analyzing the results it can be inferred that by 

hybridizing GA with ANN, the drawback of the BP algorithm 

getting trapped at local minima and slow convergence can be 

easily avoided. In comparison to ANN trained using the BP 

algorithm (BPNN) which took 1374 epochs and 50.903 

seconds to reach the desired level of performance, the hybrid 

ANN-GA took only 63 epochs and 41.7293 seconds 

(including GA time to evolve weights and biases) to achieve 

the same performance. 

The ANN-GA model provided a good prediction during 

training, validation and testing of the trained model. This is 

proved by higher values of statistics R, E and lower values of 

statistics MAPE and RMSE. In comparison to BPNN model, 

which provided NMBE values 0.2497%, 0.1950% and                   

-0.5249%, the ANN-GA model gave 0.0004%, 0.0138% and 

0.0531% values during training, validation and testing phases 

respectively. This indicates the consistency of prediction 

provided by the hybrid ANN-GA model.  

The performance statistics computed for the entire dataset 

using the trained ANN-GA model, showed a lower RMSE, 

MAPE value of 2.4197 mm and 1.1346% respectively and a 

higher E and R value of 0.9611 and 0.9804 respectively. The 

value of NMBE statistics -0.2570% and 0.0129% for BPNN 

and ANN-GA models respectively, indicates that BPNN 

model is under predicting the slump values whereas ANN-GA 

achieved a near optimal prediction of slump values. Overall, 

the statistical analysis shows that, ANN-GA has consistently 

outperformed the prediction accuracy of BPNN models.  
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VI. RELATIVE IMPORTANCE OF CONCRETE DESIGN MIX 

PROPORTIONS ON SLUMP VALUE 

In the neural network, the connection weights between 

neurons are the links between the inputs and the outputs, and 

therefore are the links between the problem and the solution 

[30]. The connection weights can be used to interpret the 

influence of the input variables and understand the role played 

by each neuron in the hidden layer [31]. The procedure given 

by Garson [32] called the “Weights Method”, involves 

partitioning the hidden-output connection weights of each 

hidden neuron into components associated with each input 

neuron [33]. The product of input-hidden layer neuron weights 

wij (i represents the input neuron and j represents the hidden 

neuron) and hidden-output layer neuron weights vjk (j 

represents hidden neuron and k represents the output neuron) 

are summed across all hidden neurons. The relative 

contributions of the variables are calculated by dividing the 

absolute value of each variable contribution by the grand sum 

of all absolute contributions. Equation (7) gives percentage 

impact Qik of the input variable xi on the output yk [34]. 
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where 
1

N
wrj

r
∑
=

denotes the sum of connection weights between 

the input neurons N  and the hidden neuron j . Fig. 9 shows 

the relative importance of concrete’s design mix constituents 

on the slump value. 
 

 

Fig. 9 Relative importance of concrete constituents on slump value 

 

The results evaluated using “Weights Method” reveal that 

water content in the concrete has a predominant effect on the 

workability contributing 37.33% relative importance to the 

slump value since it improves fluidity of the fresh concrete by 

lubricating the particles through formation of a water film. 

Sand imparted 33.39% importance due to its higher volumetric 

percentage in the concrete paste. Sand influences workability 

by reducing the inter-particle friction thereby increasing 

workability. But very fine sands require more paste for a given 

consistency leading to mixes that are harsh and unworkable. 

Also a higher fine to coarse aggregate ratio decreases 

consistency and increases cohesiveness. The relative 

importance of coarse aggregates (CA) of size 20 mm and 10 

mm was cumulatively evaluated as 15.54%. Due to smaller 

size and light weight of CA (10 mm), it needs small effort to 

overcome the inter-particle frictional resistance. For the same 

volume of aggregates, CA (20 mm) due to their larger size, 

has smaller surface area demanding smaller coating of cement 

paste. Hence a large proportion of cement paste is left for 

aiding the workability of concrete.  

PFA (Pulverised Fly Ash) is generally used as a partial 

replacement for cement. In the present study PFA imparted an 

importance of 5.41% to the concrete slump since its finer 

particles covers the interstitial pores in concrete microstructure 

thereby making more water available for lubrication. Increase 

of cement content at a particular water content leads to 

excellent cohesiveness, but these mixes tend to be sticky. A 

lower cement content will lead to harsh mixes. In case of 

RMC, PFA is mostly used as partial replacement for cement 

from strength and economy point of view. Hence, due to 

incorporation of PFA in the concrete design mix, cement 

content showed a smaller relative importance of only 3.66% 

on the slump value. The addition of admixture causes delayed 

setting of concrete allowing it to remain in green state for 

longer duration of time. Due to small dosage of admixture in 

the design mix considered in the study, the admixture 

constituent is shown to contribute 3.66% importance on the 

slump value.  

VII. CONCLUSIONS 

Modeling slump of concrete based on concrete’s design mix 

proportions forms a highly non-linear problem which is 

difficult to be modeled using conventional mathematical 

techniques. ANN with BP training algorithm has been 

traditionally used for modeling material behavior because of 

its simple implementation. BP algorithm is based on gradient 

descent technique and its convergence probability depends 

primarily on the initial weights and biases, which introduces a 

drawback significantly affecting the performance of ANN. 

The hybridization of ANN with GA not only covers up the 

drawback of BP algorithm to converge at suboptimal points, 

but this amalgamation of two distinct approaches helps in 

deriving the best from global search ability of GA and local 

search ability of BP algorithm. The proposed hybrid technique 

harnessed GA to evolve the optimal set of initial neural 

network weights and biases which were further fine tuned 

using LMBP algorithm.  

The study showed that in comparison to often used BPNN 

approach, the hybrid ANN-GA model gave consistent 

predictions during training, validation and testing phases, 

indicating the robustness of the hybrid modeling approach. 

Moreover, the ANN-GA model took less time in converging 
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to the desired level of performance than the BPNN model. It 

can therefore be inferred that GA evolved initial neural 

network weights and biases enable faster convergence of BP 

algorithm. The proposed hybrid model can be used as a 

decision support tool, aiding the technical staff to easily 

predict the slump value for a particular concrete design mix. 

This technique will considerably decrease the effort and time 

to design a concrete mix for a customized slump without 

undertaking multiple trials.  

Due to composite nature of concrete, the relative 

importance of each design mix constituent on the concrete 

slump cannot be ascertained directly. The “Weights method” 

based on the value of the synaptic weights of ANN offered a 

simplified technique of assessing the relative importance of 

neural network inputs. Using this technique the relative 

importance of concrete mix constituents on slump value was 

conveniently evaluated and inferences regarding the effect of 

each constituent on slump value were deduced. The study 

showed that water content, sand and coarse aggregates are the 

key ingredients in concrete design mix which impart 

maximum influence on the slump value of concrete. 
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