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An Optimal Bayesian Maintenance Policy for a
Partially Observable System Subject to Two Failure
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Abstract—In this paper, we present a new maintenance model
for a partially observable system subject to two failure modes,
namely a catastrophic failure and a failure due to the system
degradation. The system is subject to condition monitoring and the
degradation process is described by a hidden Markov model. A
cost-optimal Bayesian control policy is developed for maintaining
the system. The control problem is formulated in the semi-Markov
decision process framework. An effective computational algorithm is
developed, illustrated by a numerical example.
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I. INTRODUCTION

RECENTLY, due to the advances in sensor development
and computer technology, it became possible to

implement effective condition monitoring (CM) systems for
critical equipment in many companies. This information can
be utilized for the assessment of the actual condition of
the operating equipment without any unwanted disruption
or stopping of the operation, which result in a high
cost. A maintenance strategy referred to as condition-based
maintenance (CBM) can then be developed. Compared with
the traditional maintenance techniques, CBM reduces the risk
of catastrophic system failure as well as the maintenance
cost. It is obvious that the collected data carries only partial
information about the unknown, hidden state of the equipment
and the dimensionality of such data is typically very large,
with lots of redundancy, noise, and substantial cross and auto
correlation present.

Recently, industrial practitioners and researchers have
recognized the cost benefits obtained by applying the
economically designed control charts to equipment with CM
and maintenance decision making (see, e.g.[1], [2], [3]) and it
has been shown that the multivariate Bayesian control charts
(MVBCHs) are optimal tools to control the process compared
with the non-Bayesian charts [4]. The main objective of
this paper is to develop a Bayesian CBM policy for a
system subject to two failure modes. Recently, several papers
have been published which applied MVBCH tools for CBM
decision making (see e.g.[4], [5]). One common assumption
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in these papers is that there are two system states, an
in-control state and an out-of-control state. Although this is
a reasonable assumption for quality control applications, such
an assumptions is usually not appropriate for maintenance
modeling. In their contribution to the statistical design of
the MVBCH tools for CBM applications, [6] considered an
observable failure state. Using the fixed sampling interval,
they applied average run length (ARL) criterion to obtain the
optimal control limit. Later, including an observable failure
state, [7] in the same framework developed the optimization
models for the economic and economic-statistical design of
the MVBCH for a three-state CBM model. The authors
showed that the MVBCH performs better than the CBM
chi-square chart. Similar development of the design of a
MVBCH for CBM model can be found in [8], [9], [10],
[3]. In all existing CBM models, a failure can only occur
when system state degradation exceed the failure threshold and
maintenace is performed when the system state degradation
exceed the failure threshold. However, in reality a system may
fail suddenly during the operation of the system due to to
equipment design deficiency, manufacturing defects, etc., even
when its degradation has not yet reached the maintenance
threshold. In fact, [11] is the only reference where CBM
with multiple failure modes was developed for continuously
monitored degrading systems. However, this assumption is no
longer valid when the system state is monitored at discrete
times, which is the usual practice. Such a drawback of existing
models motivates us to consider a realistic scenario and
develop a CBM model with two modes of failures (competing
risks) i.e., a catastrophic and degradation failures which arise
quite naturally and are of much interest in the reliability area.

Various approaches for processing and modeling of such
information have been proposed in the literature which
can be generally classified as nonparametric and parametric
techniques (see e.g. [12], [13], [14], [9], [15]). In this paper,
we focus on the application of a parametric technique which
can be used to extract useful information for early fault
detection of a technical system subject to both deterioration
and sudden failures. The system is subject to CM and data
collection at regular times. We assume that the degradation
process evolves as a continuous-time homogeneous Markov
chain (Xt : t ∈ R

+) with state space X = {0, 1, 2}, where
states 0 and 1 are unobservable, representing the healthy and
unhealthy operational states respectively, and state 2 represents
the observable failure state.

In this paper, we formulate a new model assumptions for a
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system with two failure modes in Section II. The maintenance
control problem in the semi-Markov decision process (SMDP)
framework is presented in Section III, where the observation
process is defined as the residual process obtained after data
pre-processing and fitting the reference model to the in-control
portion of data histories. The whole procedure is illustrated by
an example in Section IV, followed by conclusions in Section
V.

II. MODEL FORMULATION

Assume that the degradation process of the system evolves
as a continuous-time homogeneous Markov chain (Xt : t ∈
R

+) with state space X = {0, 1, 2}, where states 0 and
1 are unobservable, representing the healthy and unhealthy
operational states respectively, and state 2 represents the
observable failure state. The system is assumed to start in
a healthy state and the sojourn times in states 0 and 1
have exponential distributions with parameters λ0 and λ1,
respectively. The transitions can only take place from each
state to the next higher state. We further assume that the
sudden failures may also occur during the system’s operational
time even when the system is working in a good condition. Let
the random variable ξ1 ≥ 0 denote failure time of a system if
the sudden failure occurs, and ξ2 ≥ 0 represents the observable
failure time if the system fails due to degradation. We note that
only the smaller of the ξl, for l = 1, 2 is in fact observable,
together with the actual mode of failure.

Suppose that at equidistance sampling times Δ, 2Δ, . . .
for Δ ∈ (0,+∞), vector data Z1, Z2, . . . ∈ R

d is
collected through condition monitoring, which gives partial
information about the system state. We first identify the
healthy portions of the data histories. There exists a variety
of segmentation methods in the literature (see e.g.[16] and
[17] for segmentation of short and long non-stationary time
series). Next, a vector autoregressive (VAR) time series
model is fitted using the healthy portion of the data to
capture any dependencies among monitored variables. When
vector AR model is identified, parameters are estimated,
and the model adequacy is verified, the residuals of VAR
model are calculated using all data histories and utilized
to detect an early fault occurrence of an operating system.
Residual monitoring has been proposed and studied by several
authors (see e.g. [18], [19], [20]). The main advantage of the
proposed approach is that the residuals of the fitted model are
conditionally independent and normally distributed [18] which
are essential properties for tractable maintenance modeling
and fast parameter estimation. For successful application of
the residual approach using real data see e.g. [14] and [9].
Therefore the observation process is represented by residuals
Y1, Y2, . . ., which are assumed to be conditionally independent
given the state of the system, and for each h ∈ N, we assume
that Yn given XhΔ = i for i = 0, 1, has d-dimensional normal
distribution Nd(μi,Σi) .

III. OPTIMAL MAINTENANCE CONTROL

In this section, we describe the Bayesian maintenance
control in the SMDP framework. From the theory of partially

observable Markov decision processes (see e.g. [21], [4], [5])
it is well known that the posterior probability statistics that the
system is in a warning state is sufficient for decision making.
Therefore at each decision epoch hΔ upon collecting a sample,
the posterior probability that the system is in the unhealthy
state Πh is updated using Baye’s rule. If Πh exceeds a control
limit Π̄ ∈ [0, 1], a system inspection is performed to check
whether the system is in the healthy state or in the unhealthy
state. If the system is found to be in healthy state, it will be left
operational without further repairs or replacement. Otherwise
preventive maintenance is triggered. If a failure occurs, failure
replacement is carried out immediately. In addition, we assume
that the sudden failure may occur which is affected by the
age of the system. Therefore, we also keep recording the age
information of the system. If the age of the system exceeds
a threshold T̄ for 0 < T̄Δ ≤ MΔ for a fixed value of
M , preventive maintenance is carried out. The objective is
to find the optimal values of the sampling interval Δ� and
control limits (Π̄�, T̄ �) that minimize the long-run expected
average cost per unit time. The following cost components
are considered:

• CS : Sampling cost incurred every time we take a sample,
• CI : Inspection cost incurred when full system inspection

is initiated which takes TI time units,
• CPM (h): Preventive maintenance cost when the age of

the system is h. It takes TP time units,
• CF : Failure (replacement) cost incurred when corrective

maintenance is performed, which takes TF time units,
• CLP : Loss of production cost rate incurred whenever the

system is stopped for performing preventive maintenance,
failure replacement, or system inspection,

• COM : Cost rate (operating maintenance cost rate) in the
warning state.

By renewal theory, the cost minimization problem is equivalent
to finding the optimal control limits such that:

g(Π̄�, T̄ �,Δ�) = inf
(Π̄,T̄ )
Δ>0

(E(Π̄,T̄ )(CC)

E(Π̄,T̄ )(CL)

)

where CL and CC denote the cycle length and cycle cost,
respectively and (Π̄, T̄ ) is a fixed control limit pair. We assume
that a cycle is completed when the system is brought back to
the healthy state and machine condition is as good as new.

Next, we develop an efficient computational algorithm in
the semi-Markov decision process (SMDP) framework to
determine the optimal control limits. Typically, computing
the long-run average cost in the SMDP framework requires
discretization of the state space of the posterior probability
process. For fixed sampling interval Δ and control limit pair
(Π̄, T̄ ), we first define the state space of the SMDP. For a
fixed large L, the SMDP is defined to be in state (l, h) if
the Πh ∈ [ l−1

L , l
L ) and hΔ represents the age of the system.

We denote set K1 = {(l, h)|1 ≤ l ≤ L, h ∈ N
+}. If the

posterior probability of being in the warning state is above
the control limit, and upon full system inspection the system
is found to be in healthy state, the SMDP is defined to be
in state (0, h) for h ∈ N

+ otherwise the SMDP is defined to
be in state (PM, h). We denote set K2 = {(0, h), (PM, h)}.
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Finally, when the machine has just started working in a good
condition the SMDP is defined to be in state (0, 0) and we
denote K3 = {(0, 0)}. Thus, the state space for the SMDP is
given by K = {K1 ∪ K2 ∪ K3}. With this definition of the
state space, for the long run average cost criterion, the SMDP
is determined by the following quantities:
p(i,h)(i′,h+1) = the probability that at the next decision epoch
the system will be in state (i′, h + 1) ∈ K given the current
state is (i, h) ∈ K.
τ(i,h) = the expected sojourn time until the next decision epoch
given the current state is (i, h) ∈ K.
C(i,h) = the expected cost incurred until the next decision
epoch given the current state is (i, h) ∈ K .
With the quantities defined above, the long-run expected
average cost g(Π̄, T̄ ,Δ) can be obtained by solving the
following system of linear equations,

v(i,h) = C(i,h) − g(Π̄, T̄ ,Δ)τ(i,h)

+
∑

(i′,h+1)∈K

P(i,h)(i′,h+1)v(i′,h+1) ∀(i, h) ∈ K

v(s1,s2) = 0 for any single (s1, s2) ∈ K

so that the optimal control limits (Π̄�, T̄ �), sampling epoch
Δ�, and the corresponding optimal average cost g(Π̄�, T̄ �,Δ�)
can be computed using Eq. (1). The remainder of the
mathematical analysis in this section is devoted to deriving
closed form expressions for the SMDP quantities i.e.
P(i,h)(i′,h+1), τ(i,h), C(i,h) for (i, h), (i′, h+ 1) ∈ K.
Transition probabilities: The SMDP transition probabilities
p(i,h)(i′,h+1) for i < Π̄, h < T̄ , θ1 = i′−1

L , and θ2 = i′
L when

the system is hΔ units old can be computed as follows:

P(i,h)(i′,h+1) = P
(
θ1 ≤ Πh+1 < θ2, ξ1 > (h+ 1)Δ, ξ2 >

(h+ 1)Δ
∣∣Πh, ξ1 > hΔ, ξ2 > hΔ

)
= P

(
θ1 ≤ Πh+1

< θ2
∣∣ξ1 > (h+ 1)Δ, ξ2 > (h+ 1)Δ,Πh, ξ1 > hΔ,

ξ2 > hΔ
)
× P

(
ξ1 > (h+ 1)Δ

∣∣ξ2 > (h+ 1)Δ,Πh,

ξ1 > hΔ, ξ2 > hΔ
)
× P

(
ξ2 > (h+ 1)Δ

∣∣Πh, ξ1 >

hΔ, ξ2 > hΔ
)
= P

(
θ1 ≤ Πh+1 < θ2

∣∣ξ1 > (h+ 1)

Δ, ξ2 > (h+ 1)Δ,Πh

)R1((h+ 1)Δ)

R1(hΔ)
R2(Δ|Πh)

where,

P (θ1 ≤ Πh+1 < θ2
∣∣ξ1 > (h+ 1)Δ, ξ2 > (h+ 1)Δ,Πh)

= P
(
θ1 ≤ Πh+1 < θ2

∣∣ξ1 > (h+ 1)Δ, ξ2 > (h+ 1)Δ,

Πh, X(h+1)Δ = 0
)
× P

(
X(h+1)Δ = 0

∣∣ξ1 > (h+ 1)Δ,

ξ2 > (h+ 1)Δ,Πh

)
+ P

(
θ1 ≤ Πh+1 < θ2

∣∣ξ1 > (h+ 1)

Δ, ξ2 > (h+ 1)Δ,Πh, X(h+1)Δ = 1
)
× P

(
X(h+1)Δ = 1∣∣ξ1 > (h+ 1)Δ, ξ2 > (h+ 1)Δ,Πh

)
Where Πh+1 represents the posterior probability that the
system with age (h + 1)Δ is in warning state. It can be

expressed recursively as:

Πh+1 = P (X(h+1)Δ = 1|Yh+1, ξ2 > (h+ 1)Δ,Πh)

=
f(Yh+1|1)(P01(Δ)(1−Πh)+P11(Δ)Πh)

f(Yh+1|1)(P01(Δ)(1−Πh)+P11(Δ)Πh)+f(Yh+1|0)P00(Δ)(1−Πn−1)

where transition probability matrix for the state process is
given by:

P (t) = (pij(t)) =⎛
⎝ e−λ0t λ0(e

−λ1t−e−λ0t)
λ0−λ1

1− e−λ0t − λ0(e
−λ1t−e−λ0t)
λ0−λ1

0 e−λ1t 1− e−λ1t

0 0 1

⎞
⎠

Under the assumption Σ0 �= Σ1, we have,

f(Yh+1|μ0,Σ0)

f(Yh+1|μ1,Σ1)
=

√
|Σ1|
|Σ0|e

1
2 (Yh+1−B)′A(Yh+1−B)+ 1

2C

where constants A = Σ−1
1 − Σ−1

0 , B = (Σ−1
1 −

Σ−1
0 )−1(Σ−1

1 μ1−Σ−1
0 μ0), and C = (μ′

1Σ
−1
1 μ1−μ′

0Σ
−1
0 μ0)−

B′(Σ−1
1 μ1−Σ−1

0 μ0). Thus for Vh+1 = (Yh+1−B)′A(Yh+1−
B) we will have,

Πh+1 =
c1Πh

c1Πh
+ c0Πh

(|Σ1|.|Σ0|−1)1/2 exp
(
1
2 (Vh+1 + C)

)
where c0Πh

= P00(Δ)(1 − Πh) + P10(Δ)Πh, and c1Πh
=

P01(Δ)(1−Πh) + P11(Δ)Πh. Therefore,

P
(
θ1 ≤ Πh+1 < θ2|ξ1 > (h+ 1)Δ, ξ2 > (h+ 1)Δ,Πh

)
= P

[
2 ln

(
(1− θ2)c

1
Πh

θ2c0Πh

√
|Σ0|
|Σ1|

)
− C < Vh+1 ≤

2 ln

(
(1− θ1)c

1
Πh

θ1c0Πh

√
|Σ0|
|Σ1|

)
− C|X(h+1)Δ = 0

]
×

(
c0Πh

c0Πh
+ c1Πh

)
+ P

[
2 ln

(
(1− θ2)c

1
Πh

θ2c0Πh

√
|Σ0|
|Σ1|

)
− C

< Vh+1 ≤ 2 ln

(
(1− θ1)c

1
Πh

θ1c0Πh

√
|Σ0|
|Σ1|

)
− C|X(h+1)Δ

= 1

]
×
(

c1Πh

c0Πh
+ c1Πh

)
= T0(θ1, θ2|ξ1 > (h+ 1)Δ,

ξ2 > (h+ 1)Δ,Πh) ·
(

c0Πh

c0Πh
+ c1Πh

)
+ T1(θ1, θ2|ξ1 >

(h+ 1)Δ, ξ2 > (h+ 1)Δ,Πh) ·
(

c1Πh

c0Πh
+ c1Πh

)

for any 0 < θ0 < θ1 < 1. Since Yh − B|X(h+1)Δ = 0 ∼
N(μ0 −B,Σ0) and Yh −B|X(h+1)Δ = 1 ∼ N(μ1 −B,Σ1),
T0(θ1, θ2|ξ1 > (h + 1)Δ, ξ2 > (h + 1)Δ, Yh,Πh) and
T1(θ1, θ2|ξ1 > (h + 1)Δ, ξ2 > (h + 1)Δ, Yh,Πh) can
be computed using Theorem 3.1 in [22] which provided a
closed-form expression for the cumulative distribution function
of Vh+1|X(h+1)Δ. For a large value of L, Πh can be computed
using:

Πh =

{
i−.5
h if i > 0, ∀h,

0 if i = 0, ∀h.
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And also,

P(i,h)(0,0) = P
(
min(ξ1, ξ2) ≤ (h+ 1)Δ|ξ1 > hΔ, ξ2 >

hΔ,Πh

)
= 1−R1((h+ 1)Δ|hΔ).R2(Δ|Πh)

P(i,h)(PM,h) =
i− .5

L
for i ≥ Π̄ and h < T̄

P(i,h)(0,h) = 1− i− .5

L
for i ≥ Π̄ and h < T̄

P(PM,h)(0,0) = 1

P(i,h)(0,0) = 1 for h ≥ T̄

Expected sojourn times: The expected sojourn time for each
state can be derived as follows:

τ(i,h) = E(T(i,h)|ξ1 > hΔ, ξ2 > hΔ,Πh)

= Δ
∑

i′∈K1

P(i,h)(i′,h+1) +

∫ Δ

0

(TF + t)
[
− d

dt

(
R1(hΔ

+t|hΔ)R2(t|Πh)
)]

dt = Δ
∑

i′∈K1

P(i,h)(i′,h+1) +

[
− (TF + t)R1(hΔ+ t|hΔ)R2(t|Πh)

]Δ
0
+

∫ Δ

0

R1(hΔ

+t|hΔ)R2(t|Πh)dt for i < Π̄, h < T̄

τ(PM,h) = TPM

τ(i,h) = TI for i ≥ Π̄, h < T̄

τ(i,h) = TPM for h ≥ T̄

Expected costs:: The average cost incurred until the next
decision epoch for each state is given by:

C(i,h) = E(Cost(i,h)|ξ1 > hΔ, ξ2 > hΔ,Πh)

= CS

∑
i′∈K1

P(i,h)(i′,h+1) + (CLP · TF + CF )P(i,h)(0,0)

+COM

∫ Δ

0

P (Xt = 1|ξ1 > hΔ, ξ2 > hΔ,Πh)dt

= CS

∑
i′∈K1

P(i,h)(i′,h+1) + (CLP · TF + CF )P(i,h)(0,0)

+COM

∫ Δ

0

(P01(t)(1−Πh) + P11(t)Πh) dt

for i < Π̄, h < T̄

C(PM,h) = CPM (h) + CLP · TPM

C(i,h) = CI + CLP · TI for i ≥ Π̄, h < T̄

C(i,h) = CPM (h) + CLP · TPM for h ≥ T̄

IV. NUMERICAL EXAMPLE

We assume that the system deterioration follows a
continuous-time homogenous Markov chain (Xt, t ≥ 0),
with state space X = {0, 1, 2}. Unobservable states 0
and 1 represent the healthy and unhealthy operational states
respectively, and state 2 corresponds to the observable failure
state. The transition rates of the state process are given by
λ0 = .15 and λ1 = .3 . We further assume that the observation
process (Yh : h ∈ N) which represents the information
collected through CM at equidistant sampling epochs Δ,
follow 2-dimensional normal distributions N2(μ0,Σ0) and

N2(μ1,Σ1) when the system is in the healthy and unhealthy
state, respectively, where,

μ0 =

(
.2
−.1

)
Σ0 =

(
1.5 .5
.5 1.5

)

μ1 =

(
.8
−.6

)
Σ1 =

(
2.5 2.5
2.5 3

)

We also assume that the system is subject to sudden failure
which is the second failure mode, and time to sudden failure
follows Weibull distribution with scale parameter λ = 10 and
shape parameter k = 2. It the age of a system exceeds a
threshold T̄ , where 0 < T̄Δ ≤ 10Δ, preventive maintenance
activity is initiated.

Simultaneously, we apply the Bayesian control chart. The
inspection, preventive maintenance, and replacement time
parameters TI = 2, TPM = 3, TF = 10, and the maintenance
cost parameters CI = $10, CPM (h) = $(500 + 10h), CF =
$1500 and CLP = 20, COM = 2 dollars per unit time are
considered. In order to define the state space of the SMDP,
we have found that when L ≥ 25, the partition leads to a high
degree of precision, so that L does not need to be chosen very
large. If the estimated posterior probability that the system is
in the unhealthy state at a decision epoch is above the control
limit Π̄, the system full inspection is carried out, followed
possibly by a preventive maintenance.

Recently, [9] showed that MVBCH with a single
degradation failure mode achieved the highest number
of predicted failures and lowest total maintenance cost
when compared with other maintenance policies. We verify
the superiority of the proposed MVBCH considering two
failure modes and preventive maintenance age replacement
by comparing its performance with previously developed
MVBCH in [9] (see Table I).

TABLE I
COMPARISONS WITH OTHER METHOD.

MVBCH with MVBCH with no
age replacement age replacement

Π̄� .25 .25
Δ� 1 1

g(Π̄�, T̄ �,Δ�) $47.21 $58.95

V. CONCLUSIONS

In this paper, we have proposed a maintenance policy based
on a combination of a multivariate Bayesian control chart
and a preventive age-based policy for a system subject to
two failure modes, namely a sudden failure and a failure
due to system degradation. It has been assumed that the
failure time due to sudden failure follows a general type of
distribution. The degradation state process has been modeled
as a 3-state continuous time Markov chain, where only
the failure state is observable. An efficient computational
algorithm in the semi-Markov decision process (SMDP)
framework has been developed to determine the optimal
control limits. A comparison with a maintenance policy
based on a multivariate Bayesian control chart with no age
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replacement has been given. It has been found that the
new maintenance policy proposed in this paper considerably
reduces the average maintenance cost.

By introducing the maintenance policy proposed in this
paper which is easy to implement, the maintenance cost will
be reduced substantially and also the machine safety and
reliability will be improved. In our future work, the new
maintenance policy will be applied to real data. We hope that
the results obtained in this paper will motivate future research
in this area by allowing the state sojourn times to have more
general distributions.
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