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Abstract—In this paper, we apply the Exp-function method to
Rosenau-Kawahara and Rosenau-KdV equations. Rosenau-Kawahara
equation is the combination of the Rosenau and standard Kawahara
equations and Rosenau-KdV equation is the combination of the
Rosenau and standard KdV equations. These equations are nonlinear
partial differential equations (NPDE) which play an important role
in mathematical physics. Exp-function method is easy, succinct and
powerful to implement to nonlinear partial differential equations
arising in mathematical physics. We mainly try to present an
application of Exp-function method and offer solutions for common
errors wich occur during some of the recent works.
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I. INTRODUCTION

T (NPDE) plays an important role in mathematical physics,
engineering and the other sciences. In the past several decades,
various methods for obtaining solutions of NPDEs and ODEs
have been presented, such as, tanh-function method [1],
[2], [3], Adomian decomposition method [4], [5], Homotopy
perturbation method [6], [7], [8], variational iteration method
[9], [10], [11], spectral method [12], [13], [14], sine-cosine
method [15], [16] and so on. Recently, Ji-Huan He and
Xu-Hong Wu [17], [18] have proposed a novel method called
Exp-function method, which is easy, succinct and powerful
to implement to nonlinear partial differential equations arising
in mathematical physics. The Exp-function method has been
successfully applied to many kinds of NPDEs, such as, KdV
equation with variable coefficients [19], Maccari’s system
[20], Boussinesq equations [21], Burger’s equations [22], [23],
[24], Double Sine-Gordon equation [25], [26], Schrödinger
equations [27], Jaulent-Miodek equations [28] and other
important nonlinear differential equations [29], [30], [31],
[32], [33]. However, common errors have occurred during the
application of Exp-function method in several recent papers.
Seven common errors are formulated and classified by [34].
In this paper, we attempt to rectify these common errors in
order to obtain the exact solutions of two nonlinear partial
differential equations, namely, Rosenau-Kawahara equation
and Rosenau Korteweg-de Vries (Rosenau-KdV) equation
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given by

ut + uxxxxt + ux + uux + uxxx − uxxxxx = 0 ,

ut + uxxxxt + ux + uux + uxxx = 0 ,

,respectively.
Evidently, the Rosenau-Kawahara equation can be

considered as the combination of the following Rosenau
equation and standard Kawahara equation

ut + uxxxxt + ux + uux = 0 ,

ut + uux + uxxx − uxxxxx = 0 ,

,respectively and the Rosenau-KdV equation can be considered
as the combination of the following Rosenau equation and
standard KdV equation

ut + uxxxxt + ux + uux = 0 ,

ut + uux + uxxx = 0 ,

respectively. Rosenau equation was proposed by Rosenau [35],
[36] to describe the dynamics of dense discrete systems. Also,
Kawahara equation is a model equation for plasma waves,
capillary-gravity water waves [37].
The rest of the paper is organized as follows: Section II
describes the Exp-function method for finding some exact
solutions for the NPDEs. Afterwards, the applications of the
proposed analytical scheme are presented in Section III. The
conclusions and findings are discussed in the Section IV.

II. BASIC IDEA OF EXP-FUNCTION METHOD

We consider a general nonlinear PDE in the following form

N(u, ux, ut, uxx, utt, uxt, ...) = 0 , (1)

where N is a polynomial function with respect to the
indicated variables or some functions which can be reduced
to a polynomial function by using some transformation. We
introduce a complex variation as

u(x, t) = U(η) , η = kx+ ωt . (2)

where k and ω are constants. We can rewrite (1) in the
following nonlinear ordinary differential equations

N(U, kU ′, ωU ′, k2U ′′, ...) = 0 ,

where the prime denotes the derivation with respect to η.
According to the Exp-function method [17], we assume that
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the solution can be expressed in the form

U(η) =

∑c
i=−d ai exp(iη)∑p
j=−q bj exp(jη)

, (3)

where c, d, p and q are positive integers which can be freely
chosen and ai and bj are unknown constants to be determined.
To determine the values of c and p, we balance the highest
order linear term with the highest order nonlinear term in
(3). Similarly to determine the values of d and q. So, by
means of the Exp-function method, we obtain the generalized
solitary solution and periodic solution for nonlinear evolution
equations arising in mathematical physics.

III. APPLICATIONS OF THE EXP-FUNCTION METHOD

A. Rosenau-Kawahara equation
In this section, we detailed the steps of the Exp-function

method to construct the exact solutions of Rosenau-Kawahara
(RK) equation

ut + uxxxxt + ux + uux + uxxx − uxxxxx = 0 . (4)

Making the travelling wave transformation

u(x, t) = U(η), η = kx+ ωt , (5)

and integrating with respect to η, (4) becomes an ordinary
differential equation in the form

(ω + k)U +
k

2
U2 + k3U ′′ + k4(ω − k)U ′′′′ = 0 , (6)

where the prime denotes the derivative with respect to η and
also where the integration constant is chosen as zero. In other
words, we solved this problem for the case when integration
constant is zero.
According to the Exp-function method [26], [17], [38], we
assume that the solution of (6) can be expressed in the form

U(η) =
ac exp(cη) + ...+ a−d exp(−dη)

bp exp(pη) + ...+ b−q exp(−qη)
, (7)

where c, d, p and q are positive integers which are unknown
to be determined later. In order to determine the values of c
and p, we balance the linear term of the highest order with
the highest order nonlinear terms in (6), i.e. U ′′′′ and U2. we
have

U ′′′′ =
c1 exp[(c+ 15p)η] + ...

c2 exp[16pη] + ...
, (8)

and

U2 =
c3 exp[2cη] + ...

c4 exp[2pη] + ...
=

c3 exp[(2c+ 14p)η] + ...

c4 exp[16pη] + ...
, (9)

where ci are coefficients. By balancing the highest order of
Exp-function in (8) and (9), we derive

c+ 15p = 2c+ 14p ,

which leads to the following result

p = c .

Similarly to determine the values of d and q, we balance the
linear term of lowest order in (6)

U ′′′′ =
...+ d1 exp[−(15q + d)η]

...+ d2 exp[−16qη]
, (10)

and

U2 =
...+ d3 exp[−2dη]

...+ d4 exp[−2qη]
=

...+ d3 exp[−(2d+ 14q)η]

...+ d4 exp[−16qη]
, (11)

where di are determined coefficients, we obtain

−(15q + d) = −(2d+ 14q) ,

which leads to the result q = d.
1) Case I: p = c = 1, q = d = 1: Based on this selection,

(3) reduces to

U(η) =
a1 exp(η) + a0 + a−1 exp(−η)

exp(η) + b0 + b−1 exp(−η)
. (12)

Substituting (12) into (6) and equating to zero the coefficients
of each exp(nη) yield a set of algebraic equations for a0,
b0, a−1, a1, b1, k and ω. By solving the system of algebraic
equations with a professional mathematical software, we
obtain

case 1.⎧⎪⎨
⎪⎩
a−1 = −b20, b−1 = 1

4b
2
0,

a0 = 8b0, b0 = b0,

a1 = −4, k = ω =
√
2.

(13)

inserting these results into (12), we obtain

U(η) =
−4 exp(η) + 8b0 − b20 exp(−η)

exp(η) + b0 +
1
4b

2
0 exp(−η)

. (14)

where η =
√
2(x + t) and b0 is a free parameter which can

be determined by initial or boundary conditions . We rewrite
(14) by using (5)

u(x, t) = (15)
−4 exp(

√
2(x+ t)) + 8b0 − b20 exp(−

√
2(x+ t))

exp(
√
2(x+ t)) + b0 +

1
4b

2
0 exp(−

√
2(x+ t))

.

These results cover some of the special solutions of (4)
regarding to the initial value conditions. By considering
u(x, 0) = −4 + 6 csch2(

√
2
2 x) as a initial value condition,

we have{
ut + uxxxxt + ux + uux + uxxx − uxxxxx = 0 ,

u(x, 0) = −4 + 6 csch2(
√
2
2 x) .

(16)

From (16) and (15), we obtain

b0 = 2 , (17)

Thus, from substituting (17) into (15), we obtain

u(x, t) =
−4 exp(

√
2(x+ t)) + 16− 4 exp(−√

2(x+ t))

exp(
√
2(x+ t)) + 2 + exp(−√

2(x+ t))

= −4 + 6× 4

exp(
√
2(x+ t)) + 2 + exp(−√

2(x+ t))

= −4 + 6 csch2

[√
2

2
(x+ t)

]
.

which is the solution obtained by tanh method in [39].
If (4) be in the following form{
ut + uxxxxt + ux + uux + uxxx − uxxxxx = 0 ,

u(x, 0) = −4− 6sech2(
√
2
2 x)

(18)
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then, by considering, (15), we can obtain

b0 = −2 , (19)

Thus, substituting b0 = −2 into (15), we have

u(x, t) =
−4 exp(

√
2(x+ t))− 16− 4 exp(−√

2(x+ t))

exp(
√
2(x+ t))− 2 + exp(−√

2(x+ t))

= −4− 6× 4

exp(
√
2(x+ t))− 2 + exp(−√

2(x+ t))

= −4− 6 sech2

[√
2

2
(x+ t)

]
.

which is the solution obtained by tanh method in [39].
case 2.⎧⎪⎨
⎪⎩
a−1 = 0, b−1 = 1

4b
2
0,

a0 = −12b0, b0 = b0,

a1 = 0, k = ω = i
√
2.

(20)

In this case, k and ω are imaginary numbers. Substituting these
results into (12), we obtain the following solution

U(η) =
−12b0

exp(η) + b0 +
1
4b

2
0 exp(−η)

. (21)

where η = i
√
2(x + t) and b0 is a free parameter which can

be determined by initial or boundary conditions. We rewrite
(21) by using (5)

u(x, t) = (22)
−12b0

exp(i
√
2(x+ t)) + b0 +

1
4b

2
0 exp(−i

√
2(x+ t))

.

If (4) be in the following form{
ut + uxxxxt + ux + uux + uxxx − uxxxxx = 0 ,

u(x, 0) = −6 csc2(
√
2
2 x) .

(23)

then, by considering (22), we can obtain

b0 = 2 , (24)

Thus, substituting b0 = 2 into (22), we have:

u(x, t) =
−24

exp(i
√
2(x+ t)) + 2 + exp(−i

√
2(x+ t))

= −6 csc2

[√
2

2
(x+ t)

]
.

which is the same as Zuo’s solutions [39].
Also if (4) be in the following form{
ut + uxxxxt + ux + uux + uxxx − uxxxxx = 0 ,

u(x, 0) = −6 sec2(
√
2
2 x) .

(25)

then, by considering (22), we can obtain

b0 = −2 , (26)

Thus, substituting b0 = −2 into (22), we have:

u(x, t) =
24

exp(i
√
2(x+ t))− 2 + exp(−i

√
2(x+ t))

= −6 sec2

[√
2

2
(x+ t)

]
.

which is the exact solution given by Zuo in[39].
2) Case II: p = c = 2, q = d = 2: In this case (7) becomes

U(η) =
a2 exp(2η) + a1 exp(η) + a0 + ...

exp(2η) + b1 exp(η) + b0 + ...
(27)

...+ a−1 exp(−η) + a−2 exp(−2η)

...+ b−1 exp(−η) + b−2 exp(−2η)
,

There are some free parameters in this equation. For simplicity,
we study the two different cases:
A. a−1 = a1 = 0
In this case (27) can be expressed as

U(η) =
a2 exp(2η) + a0 + ...

exp(2η) + b1 exp(η) + b0 + ...
(28)

...+ a−2 exp(−2η)

...+ b−1 exp(−η) + b−2 exp(−2η)

Substituting (28) into (6) and equating to zero, the coefficients
of each exp(nη) yield a set of algebraic equations for a0,
b0, a−1, a1, b1, k and ω. By solving the system of algebraic
equations with a professional mathematical software, we
obtain the coefficients

case A.1.

a2 = a−2 = 0, a0 =
105

13
b21

√
205− 13

36
, b0 =

3

8
b21, (29)

b−1 =
1

16
b31, b−2 =

1

256
b41

k =
1

6

√√
205− 13, ω = −1

6

√√
205− 13×

√
205

13

where b1 is a free parameter. Inserting (29) into (28), we have

u(x, t) = (30)
105
13 b21

√
205−13
36

exp(2η) + b1 exp(η) +
3
8b

2
1 + ...

...

...+ 1
16b

3
1 exp(−η) + 1

256b
4
1 exp(−2η)

where η =

√√
205−13
6

[
x−

√
205
13 t

]
. If (4) be in the following

form⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut + uxxxxt + ux + uux + uxxx − uxxxxx = 0 ,

u(x, 0) =(
− 35

12 + 35
156

√
205

)
csch4

[
1
12

√√
205− 13 x

]
.

(31)

then, by considering, (30), we can obtain

b1 = 4 . (32)

Thus, substituting b1 = 4 into (36), we have:

u(x, t) =
140
39 (

√
205− 13)

exp(2η) + 4 exp(η) + 6 + 4 exp(−η) + exp(−2η)

=

(
− 35

12
+

35

156

√
205

)
∗ ...

... ∗ csch4

[
1

12

√√
205− 13

(
x−

√
205

13
t

)]
.
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which is the exact solution given by Zuo in [39] obtained via
sine-cosine method.
Also, if (4) be in the following form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uxxxxt + ux + uux + uxxx − uxxxxx = 0 ,

u(x, 0) =

(
− 35

12 + 35
156

√
205

)
∗ ...

... ∗ sech4

[
1
12

√√
205− 13x

]
.

(33)

then, by considering (36), we can obtain

b1 = −4 . (34)

Thus, substituting b1 = −4 into (36), we have:

u(x, t) =
140
39 (

√
205− 13)

exp(2η)− 4 exp(η) + 6− 4 exp(−η) + exp(−2η)

=

(
− 35

12
+

35

156

√
205

)
∗ ...

... ∗ sech4

[
1

12

√√
205− 13

(
x−

√
205

13
t

)]
.

Comparing our result and Zuo’s result [39] show that the
results are the same.
case A.2.

a2 = a−2 = 0, a0 = −105

13
b21

√
205 + 13

36
, b0 =

3

8
b21, (35)

b−1 =
1

16
b31, b−2 =

1

256
b41

k =
1

6
i

√√
205 + 13, ω =

1

6
i

√√
205 + 13×

√
205

13

where b1 is a free parameter. Substituting these results into
(28), we obtain the following exact solution

u(x, t) = −
105
13 b21

√
205+13
36

exp(2η) + b1 exp(η) +
3
8b

2
1 + ...

(36)
...

...+ 1
16b

3
1 exp(−η) + 1

256b
4
1 exp(−2η)

where η = i

√√
205+13
6

[
x+

√
205
13 t

]
. If (4) be in the following

form⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut + uxxxxt + ux + uux + uxxx − uxxxxx = 0 ,

u(x, 0) =

−
(

35
12 + 35

156

√
205

)
csc4

[
1
12

√√
205 + 13 x

] (37)

Then, by considering (36), we can obtain

b1 = 4 . (38)

Thus, substituting b1 = 4 into (36), we would have the same
solution obtained by sine-cosine method [39]. Also, if (4) be

in the following form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut + uxxxxt + ux + uux + uxxx − uxxxxx = 0 ,

u(x, 0) =

−
(

35
12 + 35

156

√
205

)
sec4

[
1
12

√√
205 + 13 x

] (39)

Then, by considering (36), we can obtain

b1 = −4 . (40)

Thus, substituting b1 = −4 into (36), we would have the same
solution obtained by sine-cosine method [39].
case A.3.

a2 = −4, a−2 = − 1

324
b41, a0 =

14

9
b21, b0 =

5

18
b21, (41)

b−1 =
1

36
b31, b−2 =

1

1296
b41, k = ω = ±

√
2

where b1 is a free parameter. Substituting these results into
(28), we obtain the following exact solution

u(x, t) =

−4 exp(2η) + 14
9 b21 − ...

exp(2η) + b1 exp(η) +
5
18b

2
1 + ...

...− 1
324b

4
1 exp(−2η)

...+ 1
36b

3
1 exp(−η) + 1

1296b
4
1 exp(−2η)

,

where η = ±√
2(x+ t).

B. b−1 = b1 = 0
In this case (27) can be expressed as

U(η) =
a2 exp(2η) + a1 exp(η) + a0 + ...

exp(2η) + b0 + ...
(42)

...+ a−1 exp(−η) + a−2 exp(−2η)

...+ b−2 exp(−2η)
,

Substituting (42) into (6) and equating to zero the coefficients
of each exp(nη) yield a set of algebraic equations for a0,
b0, a−1, a1, b1, k and ω. By solving the system of algebraic
equations with a professional mathematical software, we
obtain the coefficients

case B.1.

a2 = −4, a0 = − 5

72
a21, b0 = − 1

288
a21, (43)

b−2 =
1

331776
a41, a−1 =

1

576
a31

a−2 = − 1

82944
a41, k = ω = ±

√
2

where a1 is a free parameter. Inserting (43) into (42), we have

u(x, t) =
−4 exp(2η) + a1 exp(η)− 5

72a
2
1 + ...

exp(2η)− 1
288a

2
1 + ...

...+ 1
576a

3
1 exp(−η)− 1

82944a
4
1 exp(−2η)

...+ 1
331776a

4
1 exp(−2η)

,
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where η = ±√
2(x+ t).

case B.2.

a2 = a−2 = 0, a0 = ±48b
1/2
−1 , b0 = ∓2b

1/2
−1 , (44)

a1 = ±24b
1/4
−1 or ± 24ib

1/4
−1 ,

a−1 = ±24b
3/4
−1 or ± 24ib

3/4
−1 ,

k = ω = ±i
√
2

where b−1 is a free parameter. Substituting (44) into (42), we
get the exact solitary wave solutions of (4).

B. Rosenau-KdV equation

In this section, we consider a generalized form of the
Rosenau-KdV equation, which reads

ut + uxxxxt + ux + uux + uxxx = 0 , (45)

Using the transformation (5) and integrating with respect to
η, then (45) becomes

(ω + k)U +
k

2
U2 + k3U ′′ + k4ωU ′′′′ = 0 , (46)

where the prime denotes the derivative with respect to η and
also where the integration constant is chosen as zero. In other
words, we are solved this problem for the case when the
integration constant is zero. Substituting (3) into (46) and then
balancing the linear term of the highest order U ′′′′ with the
highest order nonlinear term U2 in (46), we have

c+ 15p = 2c+ 14p , − (15q + d) = −(2d+ 14q) ,

This leads to the result

c = p, q = d .

We can choose the values of c and d, we set p = c = 2 and
q = d = 2, the trial function, (3) becomes

U(η) =
a2 exp(2η) + a1 exp(η) + a0 + ...

exp(2η) + b1 exp(η) + b0 + ...
(47)

...+ a−1 exp(−η) + a−2 exp(−2η)

...+ b−1 exp(−η) + b−2 exp(−2η)
,

There are some free parameters in (47), we set a1 = a−1 = 0
for simplicity, the trial function is simplified as follows

U(η) =
a2 exp(2η) + a0 + ...

exp(2η) + b1 exp(η) + b0 + ...
(48)

...+ a−2 exp(−2η)

...+ b−1 exp(−η) + b−2 exp(−2η)
,

Substituting (48) into (46) and equating to zero the coefficients
of each exp(nη) yield a set of algebraic equations for a0,
b0, a−1, a1, b1, k and ω. By solving the system of algebraic
equations with a professional mathematical software, we
obtain the coefficients

case 1.

a2 = a−2 = 0, a0 =
105

13
b21

√
313− 13

72
, (49)

b0 =
3

8
b21, b−1 =

1

16
b31, b−2 =

1

256
b41

k =
1

12

√
2
√
313− 26,

ω = − 1

12

√
2
√
313− 26×

(
1

2
+

√
313

26

)

where b1 is free parameter which can be determined by the
initial or boundary conditions. So, substituting (49) into (48)
we have:

u(x, t) = (50)
105
13 b21

√
313−13
72

exp(2η) + b1 exp(η) +
3
8b

2
1 + ...

...

...+ 1
16b

3
1 exp(−η) + 1

256b
4
1 exp(−2η)

,

where η = 1
12

√
2
√
313− 26

[
x−

(
1
2 +

√
313
26

)
t

]
. If (45) be

in the following form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uxxxxt + ux + uux + uxxx = 0 ,

u(x, 0) =

(
− 35

24 + 35
312

√
313

)
∗ ...

... ∗ csch4

[
1
24

√
2
√
313− 26 x

] (51)

then, by considering (50), we have

b1 = 4 . (52)

Thus, substituting b1 = 4 into (50), we have:

u(x, t) =
70
39 (

√
313− 13)

exp(2η) + 4 exp(η) + 6 + 4 exp(−η) + exp(−2η)

=

(
− 35

24
+

35

312

√
313

)
∗ ...

... ∗ csch4

[
1

24

√
2
√
313− 26

(
x−

(
1

2
+

√
313

26

)
t

)]
.

which is the exact solution given by Zuo in [39] obtained via
sine-cosine method.
Also, if (45) be in the following form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uxxxxt + ux + uux + uxxx = 0 ,

u(x, 0) =

(
− 35

24 + 35
312

√
313

)
∗ ...

... ∗ sech4

[
1
24

√
2
√
313− 26 x

]
.

(53)

then taking into account (50), we obtain

b1 = −4 . (54)
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Thus, substituting b1 = −4 into (50), we have:

u(x, t) =
70
39 (

√
313− 13)

exp(2η)− 4 exp(η) + 6− 4 exp(−η) + exp(−2η)

=

(
− 35

24
+

35

312

√
313

)
∗ ...

... ∗ sech4

[
1

24

√
2
√
313− 26

(
x−

(
1

2
+

√
313

26

)
t

)]
.

which is the same as Zuo’s solution[39].

case 2.

a2 = a−2 = 0, a0 = −105

13
b21

√
313 + 13

72
, (55)

b0 =
3

8
b21, b−1 =

1

16
b31, b−2 =

1

256
b41

k = i
1

12

√
2
√
313 + 26,

ω = −i
1

12

√
2
√
313 + 26×

(
1

2
−

√
313

26

)

where b1 is a free parameter. Substituting (55) into (48) we
obtain the following solution:

u(x, t) =
− 105

13 b21
√
313+13
72

exp(2η) + b1 exp(η) +
3
8b

2
1 + ...

(56)
...

...+ 1
16b

3
1 exp(−η) + 1

256b
4
1 exp(−2η)

,

where η = i
12

√
2
√
313 + 26

[
x−

(
1
2 −

√
313
26

)
t

]
. If (45) be

in the following form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uxxxxt + ux + uux + uxxx = 0 ,

u(x, 0) = −
(

35
24 + 35

312

√
313

)
∗ ...

... ∗ csc4
[

1
24

√
2
√
313 + 26 x

]
.

then, taking into account (50), we obtain

b1 = 4 . (57)

Thus, substituting b1 = 4 into (50), we have:

u(x, t) =
− 70

39 (
√
313 + 13)

exp(2η) + 4 exp(η) + 6 + 4 exp(−η) + exp(−2η)

= −
(
35

24
+

35

312

√
313

)
∗ ...

... ∗ csc4
[
1

24

√
2
√
313 + 26

(
x−

(
1

2
−

√
313

26

)
t

)]
.

which is the exact solution given by Zuo in [39] obtained via
sine-cosine method.

Also, if (45) be in the following form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uxxxxt + ux + uux + uxxx = 0 ,

u(x, 0) = −
(

35
24 + 35

312

√
313

)
∗ ...

... ∗ sec4
[

1
24

√
2
√
313 + 26 x

]
.

(58)

then taking into account (50), we obtain

b1 = −4 . (59)

Thus, substituting b1 = −4 into (50), we have:

u(x, t) =
− 70

39 (
√
313 + 13)

exp(2η)− 4 exp(η) + 6− 4 exp(−η) + exp(−2η)

= −
(
35

24
+

35

312

√
313

)
∗ ...

... ∗ sec4
[
1

24

√
2
√
313 + 26

(
x−

(
1

2
−

√
313

26

)
t

)]
.

which is the same as Zuo’s solution[39].

In the applications of Exp-function method in the pervious
decade, common errors in finding the exact solutions of
nonlinear problems have been omitted [34]. In this paper,
we present an application of this method by tackling these
common errors

1) In all the cases, we present the initial condition to obtain
the special solution.

2) We substitute the obtained solutions into the equations
to check if they satisfy the equations..

3) We simplify the solutions of differential equations.
4) We solve these problems for the case when the

integration constant is zero.
5) We use the known general solutions of the ordinary

differential equations.
6) We use the new method for solving Rosenau-Kawahara

and Rosenau-KdV equations.

IV. CONCLUSIONS

In this paper, we considered two combined mathematical
physics problems Rosenau-Kawahara and Rosenau-KdV for
presenting an application of the Exp-function method. In
the applications of Exp-function method in previous decade,
common errors in finding the exact solutions of nonlinear
problems have been omitted [34]. In this paper, we have
presented an application of this method by tackling these
common errors. Also, we showed that this method is easy,
succinct and powerful to implement for nonlinear partial
differential equations arising in mathematical physics.
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