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Abstract—In this paper we introduce a bacteria-leukocyte model
with bacteria chemotaxsis. We assume that bacteria develop a tactic
defence mechanism as a response to Leukocyte phagocytosis. We
explore the effect of this tactic motion on Turing space in two
parameter spaces. A fine tuning of bacterial chemotaxis shows a
significant effect on developing a non-uniform steady state.

Keywords—Chemotaxis-diffusion driven instability, bacterial
chemotaxis.

I. INTRODUCTION

THE cellular response to antigen invasion is termed an

inflammation [1]. The antigen can be any microorganism.

Examples include bacteria, viruses or even a macroorganism

such as fungi [2]. The reaction against an invading antigen is

a sophisticated process which can involve various scenarios

either chemical or physical [4]. Typically, phagocytes (a type

of white blood cells) surges to the location of infection as

a response to the antigen entrance into the body [1], [3].

Leukocytes aim to halt the establishment of the antigens

by phagocytosis or by secreting cytotoxic enzymes [6], [7].

The antigen, in some sense, acts as a chemoattractant to

the phagocytes. This increase in the emigration rate of

leukocytes towards the infected area will return back to normal

(intrinsic rate) as the antigen is eradicated from the tissue.

The whole infection process is vast and complicated. Recently

there have been extensive efforts to develop mathematical

models for these sorts of regimes [8]–[12]. Since the

process of infection is essentially based on movement,

reaction-diffusion-chemoataxis models are suitable candidates

for this purpose. Motivated by their work in [4] which

describes a lumped model for tissue inflammation dynamics,

the authors extend the model to include the random motility of

phagocytes and bacteria as well as phagocytes chemotaxis [5].

One of the advantages of this extension is that it serves to

check the possibility of forming non-uniform steady states

which is, pathologically, of a particular importance where the

spatial heterogeneity of bacteria can lead to adverse effects.

Specifically, it has been shown that when ρ (the scaled bacteria

random motility) is higher than 1, the system can never exhibit

such non-uniform spatial patterns. In this chapter, we extend

the model constructed in [5] by incorporating bacterial taxis.

We assume that bacteria develop this behaviour as a response

to phagocytosis. Our assumption, whilst not observed in any
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laboratory based systems, can not be ruled out [13], [14].

We examine the effect of this hypothetical bacterial taxis on

the possibility of forming a Turing pattern in some specific

parameter spaces.

In Section II, we introduce our extended model with its

necessary assumptions. An analysis of steady states and their

stability properties is given in Section III. In Section IV the

possibility of developing a non-uniform steady state, due to

chemotaxis and diffusion, is discussed. In Section V, we

use numerical simulations to check the effect of bacterial

chemotaxis on the system’s ability to exhibit a Turing regime.

A. Preliminaries

By way of introduction, we start with a stranded reaction

diffusion system:

∂u

∂t
= f(u) +D∇2u. (1)

Here f is the reaction part whereas D is the diffusion matrix

of the states vector u. Linearisation of the reaction diffusion

system around a homogeneous, stable equilibrium state yields

∂x

∂t
= (A− ω2D)x,

where A is the linearisation of the reaction part and ω is a

wave number derived by taking Fourier transform û(x, t) =∫
u(t, x)eiωxdx in space. If A is stable, then system 1 exhibits

diffusion driven instability ( DDI) or Turing pattern [15], if the

matrix A − ω2D has at least one eigenvalue with a positive

real part for some wave number ω. In other words, there will

be no-DDI when all eigenvalues of A − ω2D lie in the left

half of the complex plane C− for all ω. It is worth adding

here that the same analysis can be carried out if chemotaxis

is involved. The only difference is that the matrix D does not

have to be diagonal. Chemotaxis-diffusion driven instability

(CDDI) will happen if at least one eigenvalue of A − ω2D
has at least one eigenvalue with a positive real part.

II. MODEL EQUATIONS

Encouraged by the model introduced in [4], [5] we

propose a reaction-diffusion-chemotaxis model which has the

same reaction part but we incorporate bacteria chemotaxis.

Assuming that b(t, x) and c(t, x) stand for the bacteria and

the phagocyte densities at time t and position x respectively

then the model considered has the structure

∂b

∂t
=

kgb

1 + b
Ki

− kdbc

Kb + b
+ μb∇2

xb+ χ1
∂

∂x
(b

∂c

∂x
)

∂c

∂t
= h0(

A

V
)cb[1 +

h1

h0
b]− gc+ μc∇2

xc− χ2
∂

∂x
(c

∂b

∂x
).
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The main assumption here is that bacteria are assumed to move

chemotactically away from the leukocytes as a developing

defence mechanism and we denote its tactic coefficient by

χ1. The chemotactic movement of the leukocytes (denoted

by χ2) is assumed to be towards the bacterial high gradients

(i.e. the bacteria is a chemoattractant). As in [5], phagocytes

and bacteria have the random motilities μb, μc respectively.

The parameters Ki,Kb are the bacterial density growth and

phagocytosis inhibition constants, respectively. The parameter

kg stands for the bacteria growth rate whereas kd is the

phagocytes killing rate. The parameters h0, h1 are the normal

and the enhanced emigration rates of the Leukocytes. The

fraction A
V is the ratio of the surface area of the venule

to the volume of the tissue. The phagocyte death rate is

represented by g and its density in the venules is given by

cb. All the movements are assumed to be in 1-dimension

(−∞ < x < ∞). The boundary conditions are ∂b
∂x = ∂c

∂x =

0 as x → ±∞ Letting c0 =
h0(

A
V )cb
g and using the scaling

v =
b

Ki
, u =

c

c0
, τ =

(
kdc0
Ki

)
t, ζ =

(
g

μcα

) 1
2

x,

γ =
kgKi

kdc0
, k = Kb

Ki
, σ = h1Ki

h0
, α = gKi

kdc0
,

ρ = μb

μc
, δ1 = χ1c0

μc
, δ2 = χ2Ki

μc
,

we get

∂v

∂t
=

γv

1 + v
− uv

k + v
+ ρ∇2

xv + δ1
∂

∂x

(
v
∂u

∂x

)
∂u

∂t
= α(1 + σv − u) +∇2

xu− δ2
∂

∂x

(
u
∂v

∂x

)
⎫⎪⎪⎬
⎪⎪⎭ (2)

where, for convenience, we denote τ by t and ζ by x.

Here δ1, δ2 are the scaled bacterial and leukocytes chemotactic

coefficients whereas ρ is the ratio of the bacterial diffusivity

to phagocytes diffusivity. The parameter σ is the ratio of

leukocyte emigration rates (enhanced/normal) whilst γ is the

ratio of the bacterial maximum growth rate to maximum

killing due to phagocyte. The parameter k refers to the ratio

of the inhibition effect on bacteria growth due to the increase

in its density to inhibition effect on its ability to kill bacteria.

The ratio of phagocyte killing and death rate is given by the

parameter α. For a detailed derivation of (2), see [4], [5].

III. THE SYSTEM WITHOUT DIFFUSION AND CHEMOTAXIS

The system always has the steady state (v, u) = (0, 1). This

is termed as the elimination steady state which corresponds

to the case where bacteria is absent (or eradicated) from

the infected tissue. The system can have two other possible

coexistence steady states, (v± > 0, u = 1 + σv±). These

are termed compromise steady states and for these steady

states bacteria exists at certain levels. In terms of the system

parameters, the bacteria steady state density v± is given as

v± =
1

2σ

[
(γ − 1− σ)±

√
(1 + σ − γ)2 + 4σ(γk − 1)

]
.

The compromise steady state does not always exist. The

existence of a physically acceptable (real and positive)

compromise steady state(s) is linked to the relation between

the quantities k and (1 + σ)−1. To see this we follow the

following argument. At equilibrium we always have

γ(v) :=
(1 + v)(1 + σv)

k + v
.

This relation, γ(v), has the following properties

• γ′(v) =
σv2 + 2σkv + k(1 + σ)− 1

(k + v)2
,

• γ(0) =
1

k
,

• γ′(0) =
k(1 + σ)− 1

k2
.

If k(1 + σ)− 1 > 0 then γ′(v) > 0 for all v, and hence γ(v)
increases without bound.

If k(1 + σ) − 1 < 0 then γ(v) initially decreases till some

v := ṽ > 0 where γ′(ṽ) = 0 and then starts increasing again.

It turns out that

ṽ = −k +

√
k2 − k(1 + σ)− 1

σ
.

This can be summarised as follows.

• If k > (1 + σ)−1: The system has no compromise states

when γ < 1/k and has only the upper state (v+) for

γ > 1/k .

• If k < (1 + σ)−1: The system has no compromise

steady states when γ < γ̃ whereas it has two when

γ̃ < γ < 1/k. The system has only one compromise

steady state if γ > 1/k. Here γ̃ = γ(ṽ).

Fig. 1 depicts the existence of the bacterial model equilibria.
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Fig. 1. The equilibria of the bacterial model in terms of the parameter γ. The
elimination steady state (red dashed) always exists. The blue curve indicates
the compromise steady state. If k > 1

1+σ
there exists only one compromise

steady state, the upper one, whereas if k < 1
1+σ

there exits two compromise

steady states, the upper and the lower.

Generally, the Jacobian is given by

A =

( γ
(1+v)2 − ku

(k+v)2 − v
k+v

ασ −α

)
. (3)

Evaluating the Jacobian on the elimination steady state yields
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A =

(
γ − 1

k 0
ασ −α

)
.

Since α > 0, the elimination steady state is stable if

γ <
1

k
.

For the compromise steady state 3 can be written as

A =

(
v(1+σv)(1−k)
(1+v)(k+v)2 − v

k+v

ασ −α

)
.

So the compromise steady state is stable when

det(A) =
αv

1 + v
γ′(v) > 0 and,

trace(A) = (
v(1 + σv)(1− k)

(1 + v)(k + v)2
− α) < 0.

At all possible lower compromise steady states, γ′ < 0 and

therefore det(A) is always negative. Consequently, the lower

compromise steady state v− is always unstable and hence it

can never show a Turing pattern.

IV. POSSIBILITY OF DEVELOPING A NON-UNIFORM

STEADY STATE

Throughout this section we will set v+ = v. The system (2)

will develop a non-uniform steady state if the matrix

X := A−ω2D =

(
v(1+σv)(1−k)
(1+v)(k+v)2 − ρω2 − v

k+v − δ1vω
2

ασ + δ2uω
2 −α− ω2

)
,

has an eigenvalue with a positive real part for some ω. In the

case of elimination steady state, this matrix reduces to

X =

(
γ − 1/k − ρω2 0

δ2 −α− ω2

)
.

Assuming the stability of the elimination steady state (0, 1)
(γ < 1/k), it is easy to see that all the eigenvalues are real and

negative for all possible wave numbers. Hence the elimination

steady state will never yield a non-uniform steady state. For

the compromise steady state we first write X as

X =

(
a11 − ρω2 a12 − δ1vω

2

ασ + δ2uω
2 −α− ω2

)
,

where

a11 =
v(1 + σv)(1− k)

(1 + v)(k + v)2
and a12 = − v

k + v
.

The corresponding characteristic equation of X is

λ2 − (trace(A)− (1 + ρ)ω2)λ+ (ρ+ δ1δ2uv)ω
4

−(a11 − ρα− δ1ασv + δ2a12u)ω
2 + det(A) = 0.

(4)

Since we always have

trace(A)− (1 + ρ)ω2 < 0,

equation 4 can have roots with positive real parts only if

(ρ+ δ1δ2uv)ω
4 − (trace(A) + (1− ρ)α− δ1ασv

+δ2a12u)ω
2 + det(A) < 0.

Completing the squares we eventually get the necessary

conditions

trace(A) + (1− ρ)α− δ1ασv + δ2a12u > 0, (5)

(trace(A)+(1−ρ)α−δ1ασv+δ2a12u)
2−4(ρ+δ1δ2uv) > 0.

(6)

It is evidently clear that from condition 5 the value δ1 can not

be too large in order to maintain the inequality in the same

direction and large bacterial taxis will violate this necessary

condition, hence CDDI will not be possible. Following [5], a

necessary conditions for this is

ρ < 1 +
trace(A)

α
+

δ2a12u

α
+

δ1ασv

α
= ρc, (7)

where ρc is the critical bacterial random motility necessary for

CDDI. Here, the bacterial taxis shifts the upper bound of ρ
obtained in [5] to the left and this, in turn, narrows the region

of ρ admissible values necessary for CDDI. Fig. 2 shows how

the set of critical values of ρc changes as the bacterial taxis

changes. The rest of the parameters are fixed.

0 0.05 0.1
0.81

0.82

0.83

0.84

δ2

ρ c

0 0.05 0.1
0.81

0.82

0.83

0.84

0.85

δ2
ρ c

0 0.05 0.1
0.76

0.77

0.78

0.79

0.8

δ2

ρ c

0 0.05 0.1
0.17

0.18

0.19

0.2

δ2

ρ c

0 0.05 0.1
0.16

0.17

0.18

0.19

δ2

ρ c

0 0.05 0.1
0.09

0.1

0.11

0.12

δ2

ρ c

δ
1
=0.011δ

1
=0.01δ

1
=0.0098

δ
1
=0.0007δ

1
=0.00005δ

1
=0

Fig. 2. Leukocytes critical random motility ρc necessary for CDDI as
a function of Leukocytes chemotaxis, for different choices of bacterial
chemotaxis. The increase in bacterial chemotaxis narrows the values of ρc
necessary for CDDI. The parameter values used here are : k = 0.01, α = 320,
σ = 350 and γ = 400.

Here we will apply the two necessary conditions (5) and (6)

to study the effect of bacterial chemotaxis on the possibility

of forming non-uniform steady states. Our focus will be on

the spaces (ρ, δ2) and (α, γ). In both cases we will consider

the situations δ1 = 0 (no bacterial chemotaxis) and δ1 �= 0
(bacteria move away from phagocytes).

Without bacterial chemotaxis (δ1 = 0) and with the

parameter values γ = 400, α = 320, σ = 350 and k = .01,

the system has only one compromise steady state (the upper

one). Fig. 3 shows a region in the parameter space (ρ,δ),
shaded green , where CDDI is possible. The boundary curve

establishes a set of critical phagocytic chemotaxis values

where at a certain level of bacterial random motility ρ the

V. NUMERICAL RESULTS

A. Bacterial diffusion vs. leukocytes random motility
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phagocytic movement has to be faster than a value given

by the intersection of the horizontal line containing ρ with

the curve. For instance, with bacterial diffusion ρ = .01 the

phagocytes needs to move faster than δ2 ≈ 2.75 in order to

halt the forming of spatial heterogeneity.
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CDDI is possible
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Fig. 3. The bacteria-leukocyte model with parameters k = 0.01, γ =
400, α = 320, σ = 350, δ2 = 3.75 and δ1 = 0. The stability region
(all the parameter space) is divided to two parts. One where CDDI is possible
(shaded green) and the other where it is not.

Fig. 4, shows how the region of no Turing pattern responds

to the change in bacterial taxis. Evidently, there is a negative

relation between the intensity of bacterial tactic behaviour

and the possibility for the system establishing a non-uniform

steady state. The values of δ1 used are 0, 0.0015, 0.005 and

0.0071.
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Fig. 4. The bacteria-leukocyte model with bacteria chemotaxis (δ1) values
: 0, 0.0015,0.005 and 0.0071. The rest of the parameter are taken as in
Fig. 3. The possibility of forming patterns decreases as bacteria chemotaxis
increases.

B. The ratio of maximum bacterial growth rate to maximum
phagocyte killing rate vs. ratio of phagocyte death rate to
maximum phagocytic killing

Here we will use the parameter values σ = 350, ρ = 0.01,

δ2 = 3.75, k = 0.01 and δ1 = 0. Fig. 5 shows the region

where CDDI is possible :
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Fig. 5. The bacteria-leukocyte model without bacteria chemotaxis (i.e. δ1 =
0). The other parameter values are: ρ = 0.01, σ = 350, k = 0.01 and
δ2 = 3.75. Stability region is right to the black curve. The region where
CDDI is possible is shaded green.

For a sequence of increasing values of δ1, namely, δ1=0,

.004, 0.09 and 0.2, Fig. 6 shows how the region where pattern

formation is possible shrinks as a response to the increase in

bacterial chemotaxis.
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Fig. 6. The paremeter space (α, γ) for various values of bacteria chemotaxis
(in an increasing order), namely, 0, 0.01, 0.09 and 0.2. The other parameters
are taken as in Fig. 5. The possibility of developing non-uniform steady state
decreases as the bacteria taxis increases

VI. CONCLUSION

Reaction-diffusion-chemotaxis models are useful for

modelling many spatio-temporal interactions involving

motion. These mechanistic models link biological processes

to mathematical quantities. Parameters in the models can be

easily tuned and so the models provide a cause and effect

framework to explore the biological process even when the

empirical evidence does not exist or is not known. In this

paper we extend the model introduced in [5]. Specifically

we assume that bacteria develops a defence mechanism in

response to an increased concentration of leukocytes. This

might be ascribed to the bacterial memory recognising the

chemical cues produced by phagocytes. The main question we

aimed to address is: Does bacterial chemotaxis have an effect

on the system’s capability to exhibit non uniform spatial
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patterns? This in turn determines whether bacterial movement

can prevent biased distribution of its own population.

According to [5] this can have an impact on the persistence

of the infection. We showed that the extent of the values of

leukocytes random motility, necessary for CDDI derived in

[5], has been narrowed due to the incorporation of bacterial

chemotaxis (7). In the both parameter spaces, we chose, it

seems that the possibility of forming a non-uniform steady

state is negatively correlated to bacterial taxis. This finding

could have a significant implications on our understanding of

the mechanism of infection and immuno-defence and should

now be confirmed by laboratory research.
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