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Abstract—DC-DC converters are widely used as reliable power 

source for many industrial and military applications, computers and 
electronic devices. Several control methods were developed for DC-
DC converters control mostly with asymptotic convergence. 
Synergetic control (SC) is a proven robust control approach and will 
be used here in a so called terminal scheme to achieve finite time 
convergence. Lyapounov synthesis is adopted to assure controlled 
system stability. Furthermore particle swarm optimization (PSO) 
algorithm, based on an integral time absolute of error (ITAE) 
criterion will be used to optimize controller parameters. Simulation of 
terminal synergetic control of a DC-DC converter is carried out for 
different operating conditions and results are compared to classic 
synergetic control performance, that which demonstrate the 
effectiveness and feasibility of the proposed control method. 
 

Keywords—DC-DC converter, PSO, finite time, terminal, 
synergetic control.  

I. INTRODUCTION 
C-DC converters have been widely used in most of the 
industrial applications such as DC motor drives, 

computer systems and communication equipments. Design of 
high performance control is a challenge because of its 
nonlinear and time variant nature. Generally, linear 
conventional control fails to accomplish robustness under 
nonlinearity, parameter variation, load disturbance and input 
voltage variation.  

Sliding mode control (SMC) has been extensively used in 
robust control approaches in many nonlinear applications like 
DC/DC converter to power system stabilizers and a large 
effort has been directed to address its main drawback: 
dangerous chattering ever present in SMC due to the 
discontinuous law component [1], [2]. Many approaches have 
been proposed to reduce the latter but mostly at the expense of 
robustness performance [3], [4]. Synergetic control like sliding 
mode control is based on the basic idea that if we could force a 
system to a desired manifold with designer chosen dynamics 
using continuous control law, we should achieve similar 
performance as SMC without its main inconvenient: chattering 
phenomenon.  

Terminal synergetic control (TSC) has the advantage of 
finite time convergence and tiny steady state error. The strong 
robustness of this control plays a very important role in 
guaranteeing the normal operation of DC converter, and it can 
make the DC-DC converter provide stable output even for 
load varying or when the input voltage varies.  
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Optimization techniques inspired by swarm intelligence 
have become increasingly popular over the last decade. They 
are characterized by a decentralized operation that mimics the 
behavior of swarms of social insects, flocks of birds, schools 
of fish. The advantage of these approaches over traditional 
techniques is their robustness and flexibility. These properties 
make the success of the swarm intelligence paradigm for the 
design of algorithms increasingly face complex problems. In 
this work, we focus on one the most successful optimization 
algorithm inspired by swarm intelligence techniques: particle 
swarm optimization (PSO). The latter shall be used to 
optimize synergetic controller parameters and applied to a 
DC-DC converter.  

The mathematical model for a typical Buck DC-DC 
converter is described in Section II. Section III presents a brief 
description of synergetic control. Design of a terminal 
synergetic controller is given in Section IV. In the following 
section, PSO algorithm is introduced and simulation results 
confirming the effectiveness and the applicability of the 
proposed method are presented in Section VI. 

II.  MODEL OF DC-DC CONVERTER 
Basic DC-DC converter schematic circuit known as a buck 

converter is illustrated in Fig. 1, consisting of one switch, a 
fast free-wheeling diode and an R, L, and C components. The 
switching action can be implemented by one of three-terminal 
semiconductor switches, such as IGBT or MOSFET.  
 

 
Fig. 1 DC-DC Buck converter 

 
When the converter works in the continuous conduction 

mode, the system can be described as in [1]. 
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where u is the switching state, when u=1, the switch M is 
turned on, and when u=0, M is off.  

Particle Swarm Optimisation of a Terminal Synergetic 
Controllers for a DC-DC Converter 

H. Abderrezek, M. N. Harmas 

D



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:8, 2014

1292

 

 

Selecting the output voltage and its derivative as system 
state variables, that is 
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Then the state space model describing the system is derived as 
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                      (3)       

 
when the switching frequency is high enough and ripples are 
small, if we suppose the duty ratio of a switching period is d 
then the state space average model can be rewritten as    
 

  
1 2

1 2
2

in

x x
Vx xx d

LC RC LC

=⎧
⎪
⎨

= − − +⎪⎩

                              (4) 

III. SYNERGETIC CONTROL OF BUCK DC-DC CONVERTER  
Introduced in the last decades, synergetic control is rapidly 

gaining acceptance not only by the robust control community 
but also by the industrial partners, as illustrated by its 
implementation in power electronics [5], [6]. We briefly 
introduce the basics of synergetic control.  

The synergetic control synthesis of the system given in (4) 
begins by defining a designer chosen macro-variable given as 
in:      

  
                           .k e eψ = +                                       (5) 

 
where 0k . 

Suppose the expected tracking voltage is r, then the tracking 
error and its derivative are defined as: 
 
                    (1)e r x= −     ;      (2)e r x= −  
 

The control will force the system to operate on the manifold   
        
                                       0ψ =  . 
 

The designer can select the characteristics of this macro-
variable according to the control specifications and as a trivial 
case a linear combination of variables of interest can be an 
appropriate choice. Control vector dimension is used to 
elaborate commensurate macro-variables.  
   Not unique, the desired dynamic evolution of the macro-
variables can be simply chosen as:  
 

                             0Tψ ψ+ =                                     (6) 
 

where T is a design parameter specifying the convergence 
speed to the equilibrium manifold.  

Directly substituting the governing (5) and (6) into (4) of 
the buck converter and rearranging, a control law is obtained, 
given by:    
 

. (1) (2) . (1/ ).
. .in

L C x xd r k e T
V L C R C

ψ⎡ ⎤= + + + +⎢ ⎥⎣ ⎦
          (7) 

 
The control elaborated guarantees only an asymptotic 

convergence to the final state, to have a faster convergence, it 
is necessary to modify the macro variable. 

IV. CONVERTER TERMINAL SYNERGETIC CONTROL 
The terminal synergetic control design is based on a 

particular choice of the macro variable which results in the 
determination of a control law to force the system to track a 
reference signal in a finite time. A terminal synergetic is 
established and a fast finite convergence is granted [7], [8]. 

Let a nonlinear macro-variable be defined as follows: 
 

         ( ) . .
q
pe e e eψ α β= + +                            (8) 

 
where 0, 0α β> > , p and q are positive constants, and    
q p> . 

Using the same procedure as in the synergetic approach, (6) 
can be expressed as:    

 

                1 1 ( )
q
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After a few simple steps, a terminal synergetic controller is 

obtained as: 
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Stability can be evaluated using the following Lyapounov 

function candidate: 
 

21 ( )
2

V eψ=                               (11) 

 
which leads, after differentiation then using (9), to: 
 

                              ( ) ( )V e eψ ψ=                             (12) 
1 1( ).( ) ( ).( ( ))

q
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Therefore the controller can meet Lyapunov stability. 
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(d) Inductor current signal for line variation 
 

 
(e) Control input signalfor line variation 

Fig. 4 Simulation signals for synergetic control 
 

 
(a) Output voltage for a 20v reference 

 

 
(b) Inductor current for a 20 v reference 

 

 
(c) Output voltage for line variation 

 

 
(d) Inductor current for line variation 

 

 
(e) Control signal for line variation 
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(f) Output voltage for load variation 

 

 
(g) Inductor current for load variation 

Fig. 5 Simulation results for terminal synergetic control 
 

 
Fig. 6 Outpout voltage of TSC with and without PSO for a 20 v 

reference  

 
Fig. 7 The objective function (ITAE) 

 
Figs. 4 and 5 show the responding profiles of output 

voltage, Inductor current, control input and tracking error of 
the two controllers. The obtained results in regulation mode 
for the synergetic control (SC) and the terminal synergetic 
control (TSC) are shown in Fig. 4 (a) and 5 (a). The results 
show that terminal synergetic control presents a faster 
convergence to the desired state than its classical counterpart. 
Indeed position error reaches zero in a time nearly equal to 
0.1s using synergetic control whereas by terminal synergetic 
control this error reaches zero in a time of the order of 0.01s.  

In order to test the robustness of the two control laws, we 
varied the source voltage from 24V to 35V at 0.25s time and 
back to 24V after 10 sec. It can be seen from these curves that 
the output voltage can track the reference with nearly zero 
error. Because the output voltage is proportional to the product 
of duty cycle and source voltage, when the source voltage 
changes, the tracking output voltage keep steady by adjusting 
duty cycle d. Simulation results are shown in Figs. 4 (b) and 5 
(b) for the two approaches regular and terminal synergetic 
control.  

Figs. 4 (c) and 5 (c) show the responding profiles 
corresponding to load fluctuation. The load resistance varies 
from 8Ω to 20Ω at the time of 0.25s and returns to 8Ω at the 
time of 0.35s.  

From these results, one can see that tracking output voltage 
indicates a small rise time and nearly zero error which are 
desired performances. Fig. 6 shows the results of simulation 
using PSO. Optimal values found for T and (q/p) through PSO 
are respectively 1.0609 and T=0.0012. The objective function 
(ITAE) is depicted in Fig. 7.  

VII. CONCLUSION 
In this paper the development and simulation of terminal 

synergetic control of a DC-DC converter using PSO to 
optimize control parameters are presented. Terminal 
Synergetic approach guarantees finite time convergence 
increasing therefore system robustness because it reduces 
reaching phase duration. Acceptable global performances are 
maintained despite load or line variation.  
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Severe operating conditions have been used to assess the 
validity of the proposed approach showing remarkable 
performance with no chattering. 
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