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CDM Controller Order and Disturbance

Rejection Ability

João Paulo Coelho, Wojciech Giernacki, José Boaventura-Cunha

algebraic control design method whose objective is to easily obtain
a good controller with minimum user effort. As a matter of fact, if a
system model, in the form of linear differential equations, is known,
the user only need to define a time-constant and the controller order.
The later can be established regarding the expected disturbance type
via a lookup table first published by Koksal and Hamamci in 2004.
However an inaccuracy in this table was detected and pointed-out in
the present work. Moreover the above mentioned table was expanded
in order to enclose any k order type disturbance.

Keywords—Coefficient diagram method, control system design,
disturbance rejection.

I. INTRODUCTION

THE coefficient diagram method (CDM), as a control

design and analysis method, was presented by Shunji

Manabe in the late nineties of the twentieth century [10], [11].

Since then many articles have been published in both CDM

theoretical extensions [12], [16] and practical applications [1],

[3], [15].

From the user point-of-view, the main feature of CDM is its

simplicity. In fact the design process only requires the designer

to define a single parameter: the equivalent time-constant.

Then the controller transfer function is automatically obtained

via an algebraic method similar to pole placement. However,

unlike the latter, the characteristic polynomial in CDM is

easily defined. An improved version of Kessler’s standard form

[6], commonly called Manabe’s standard form, is selected as

the target polynomial. This choice will lead to a zero overshoot

closed-loop step response and a settling time within 2.5 to 3

time-constants.

Besides the CDM algebraic nature, this method also

includes a diagram that can be used to understand the system

behaviour. In fact the precise name of this method derives

from this diagram. The plotted curves in this diagram can be

used to analyse the system dynamic behaviour, his robustness

regarding modelling errors and stability. The latter is added

by taking into consideration the Lypatov-Sokolov sufficient

stability conditions [9]. In this article only the algebraic steps
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of the method are considered. Hence the reader is referred

to [13] for extended treatment on the diagram nature of this

method.

In the same document Shunji Manabe emphasize that CDM

is a control design procedure tailored for people without a

strong (or even any) theoretical background in control theory.

This statement is further reinforced after the publication of [7]

where a guideline for controller order selection is presented.

However there are some issues regarding the published table

that the present article tries to point out. In particular the

controller order selection when the system is subject to

sinusoidal type disturbances.

The reasons that lead us to make this affirmation will be

are exposed.

II. THE CDM CONTROLLER DESIGN METHOD

The CDM design procedure can be summarized as follows.

First a plant mathematical model, in polynomial format,

is required. Then the characteristic equation is established

regarding the desired dynamic performance.

The next step concerns the definition of the controller

order and his description also in polynomial format. Then

the controller coefficients are obtained by solving a design

equation similar to the Diophantine equation.

The last step is to analyse the coefficient diagram and

make inference about the desired and obtained system

characteristics. Computer simulation of the overall system,

taking into consideration disturbances and measurement noise

or sensor faults, should be made.

This section presents the first four steps of the above design

algorithm and will be divided into four subsections. The

first will address the controller structure where a closed-loop

block diagram is presented and the µ operator is defined. The

controller mathematical description is presented in subsection

II-B and the characteristic polynomial in II-C. The last

subsection concerns the design equation and the shape of the

Sylvester matrix.

A. CDM Controller Structure

This section begins with the block diagram presented in

Fig. 1 where the overall CDM closed-loop system structure

can be perceived.

The first fact to be highlighted regards the use of variable

µ within the block diagram architecture. Generally, in the
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presented in Section III. However, before that, an overview on

This paper ends with Section IV where this work conclusions

the algebraic nature of CDM will be presented in Section II.
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Fig. 1. Coefficient diagram method closed-loop system structure.

literature, a similar block diagram is presented but with

the character s replacing µ. Even if this fact can be seen

as irrelevant, the use of s can bias the reader to think

that the above block diagram is expressed in the Laplace

domain. However CDM handle the system in the time domain.

Hence, in order to stress out this issue, the µ greek letter is

used instead. Note that the relationship between the Laplace

operator s and µ is equivalent to the relation between the

Z-transform variable z and the backward shift operator q. The

use of z character implies that the system representation is

in the frequency domain while the use of q defines it in the

discrete-time domain. For example Y (z) =
(

z−1 + 1
)

X(z)
and y(n) =

(

q−1 + 1
)

x(n) may resemble similar but, in fact,

they are in different domains.

Within the CDM framework, the µ operator is defined by

the equality represented in (1).

di

dti
= µi (1)

A general linear differential equation with constant

coefficients ai and bj , for i = 0, · · · , n and j = 0, · · · ,m,

with the following generic structure:

a0y(t) +

n
∑

i=1

ai
diy(t)

dti
= b0u(t) +

m
∑

j=1

bj
dju(t)

dtj
(2)

can assume an alternative formulation using the µ operator as

shown in (3).

y(t)

(

a0 +

n
∑

i=1

ai · µ
i

)

= u(t)



b0 +

m
∑

j=1

bj · µ
j



 (3)

This representation resembles a polynomial in µ with ai
and bj as coefficients and n and m as their orders. Now if one

defines A(µ) = an ·µ
n+· · ·+a0 and B(µ) = bm ·µ

m+· · ·+b0
then the system differential equation can be written, in a more

compact way, as:

A(µ) · y(t) = B(µ) · u(t) (4)

where the dot operation represent the product between each

polynomial term and the related signal.

Remark that, even if (3) resembles a polynomial, in fact it

does not represent a true polynomial since it does not possess

the same properties. For example it is not allowed to express

the signal y(t) in (4) as,

y(t) =
B(µ)

A(µ)
· u(t) (5)

Another form of system representation requires the

introduction of a state variable denoted by x(t) and defined

as:

A(µ) · x(t) = u(t) (6)

leading to a relationship between y(t) and x(t) expressed in

(7).

y(t) = B(µ) · x(t) (7)

Manabe in [10], [11] call the formulation expressed in (4) as

left polynomial form and the one defined by the pair (6) and

(7) by right polynomial form. This concept is fundamental to

properly understand the block diagram system formulation.

In Fig. 1, it is possible to observe that some polynomials

are represented in a fraction denominator. However this liberty

must be properly understood as representing (6) or (7). For

this reason, the quantity 1
A(µ) must not be taken literally as

there is no polynomial inverse in the µ domain. That is, this

polynomial representation is algebraically defined as a ring.

In the end, handling a polynomial in µ domain is different

from the one expressed in s domain. However, in practice,

the difference resumes to the fact that the numerator and

denominator must be handled separately. They cannot co-exist

in the same block since the polynomial inverse in µ is not

defined.

B. Controller Description

Consider again the block diagram of Fig. 1 where five

different polynomials in the µ domain can be distinguished.

All the signals involved in this schematic can be written using

the following four relations:

y(t) = C(µ) · x(t) (8)

D(µ) · x(t) = u(t) (9)

A(µ) · u(t) = e(t) (10)

e(t) = E(µ) · r(t)−B(µ) · y(t) (11)

Both C(µ) and D(µ) concern the plant dynamics and the

remaining three defines the controller behaviour. Please note

that if B(µ) was expressed in the Laplace domain it would be

noncausal. Moreover, in CDM controller design, the pre-filter

E(µ) is a zero order polynomial and his only coefficient is

computed in order to achieve closed-loop zero steady state

error.

Additionally, and for the sake of simplicity, let the order

of both polynomials A(µ) and B(µ) be equal to n (even if

some higher order coefficients of B(µ) must be set to zero).

Moreover lets make the same assumption about the orders of

polynomials C(µ) and D(µ). Let m be now its order value.

Also in (11) there must be a order match between the

polynomials E(µ) · r(t) and B(µ) · y(t). In practice this

mean that maybe higher order coefficients of one of the two

polynomials are equal to zero.

After some simple algebraic manipulation, and by defining

the m+ n order characteristic polynomial P (µ) as:

P (µ) = A(µ) ·D(µ) + C(µ) ·B(µ) (12)

the closed-loop system behaviour is represented by:

P (µ) · y(t) = C(µ) · E(µ) · r(t) (13)
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C. The Characteristic Polynomial

Obtaining a proper characteristic polynomial is a complex

task usually requiring a deep knowledge on control theory

in order to find the closed loop poles location. This task

can be made easier by imposing a given structure to it. In

[14] a comparison between several characteristic polynomial

structures, regarding both time and frequency performance

indexes, is presented. From the published results one can

conclude that Manabe’s and binomial polynomials present the

best results.

We begin this section by rewriting the n + m order

characteristic polynomial P (µ) as:

P (µ) =

n+m
∑

i=0

pi · µ
i (14)

Let’s define two additional figures: the stability index,

denoted by γi for i = 1, · · · , (n+m)−1 and the predominant

time constant τ . Both are described in further detail in [11]

and presented hereafter in (15) and (16):

γi =
p2i

pi−1 · pi+1
(15)

τ =
p1

p0
(16)

Each of the characteristic polynomial coefficients pi in

(14) can be written as a function of both stability indexes

and predominant time constant. Hence the (normalized)

characteristic polynomial can be expressed alternatively as:

P (µ)

p0
=

n+m
∑

i=2







(τµ)i





i−1
∏

j=1

1

γ
i−j
j











+ τµ+ 1 (17)

For Manabe’s polynomial, the coefficients are chosen in

order to have the following stability index values [11]:

γi =

{

2.5 if i = 1
2 if i = 2, · · · , n+m

(18)

D. Solving for the Controller

One of the hardest part in a pole placement method is

to obtain the characteristic polynomial. The CDM method

presents a simple way to obtain it by just defining the desired

equivalent time constant. Having the desired characteristic

polynomial, the next step is just algebraic and requires solving

an system of equations with the formulation described by (12).

Due to the fact that the plant dynamics are fixed, the

above mentioned equation has an appearance that resembles

the Diophantine equation from the numbers theory field. In

this case we don’t look for integers but for polynomials in µ

domain.

Giving p0, τ and γi beforehand, the problem resumes to the

pole-placement problem [7]. However in the CDM method

the structure of the Sylvester matrix differs from the pole

placement one. This is due to the knowledge of some A(µ)
coefficients due to a priori assumptions about the type of

system disturbances.

Assuming the Sylvester matrix Σ has the structure

represented in (20) and that the unknown polynomial

coefficients, considering zero the lower k coefficients of A(µ),
are arranged in a vector x as expressed in (21) then the CDM

controller solution is obtained by solving equation,

x = Σ−1 · p (19)

were

Σ =

































dm cm · · · 0 0
...

...
...

...

dm−n+k cm−n+k 0 0
...

...
...

...

d0 c0
. . . 0 0

0 0 dm cm
...

...
...

...

0 0 · · · d0 c0

































(20)

and

x =
[

an bn · · · ak bk bk−1 · · · b0
]T

(21)

p =
[

pn+m · · · p1 p0
]T

(22)

III. CONTROLLER ORDER AND DISTURBANCE REJECTION

Consider again the block diagram shown in Fig. 1 and let’s

analyse the output effect of a disturbance in the controlled

variable u(t). In order to do this the reference signals is set to

zero. This leads to a relationship between l(t) and y(t) given

by the differential equation presented in (23).

C(µ) ·A(µ) · l(t) =

(

A(µ) ·D(µ)+C(µ) ·B(µ)

)

·y(t) (23)

Assuming C(µ) and A(µ) are polynomials with order m

and n respectively and with the following form:

A(µ) = an · µ
n + · · ·+ a0 (24)

C(µ) = cm · µ
m + · · ·+ c0 (25)

Moreover let’s impose c0 6= 0. The product A(µ) · C(µ),
present in (23), is a m+n order polynomial. This polynomial

will be denoted by G(µ) and expanded as:

G(µ) =
m+n
∑

i=0

gi · µ
i (26)

At this point, the effect of particular disturbance types on

the output y(t), will be discussed. For the system to be able to

absorb the disturbance effect, y(t) must tend to the reference

signal as quickly as possible. Assuming r(t) = 0 this steady

state system behaviour will be easily handled in the Laplace

domain. By applying the final value theorem the following

equality should hold:

lim
t→∞

y(t) = lim
s→0
s · Y (s) (27)
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where Y (s) is the Laplace transform of y(t). That is Y (s) =
L{y(t)}. However, for this equality to hold, all the Y (s) poles

must have negative real parts and no more than one pole can

be at the origin [2].

Assuming causality and zero initial conditions, the

application of Laplace transform to the differential equation

(23) leads to,

Y (s) =
G(s)

A(s) ·D(s) + C(s) ·B(s)
L(s) (28)

where Y (s) = L{y(t)} and L(s) = L{l(t)}.
Applying the final value theorem to the above expression

and remembering that the equality (27) must hold, than,

lim
s→0

s ·G(s) · L(s) = 0 (29)

where G(s) · L(s) = L{G(µ) · l(t)}.

Now let’s analyse this last expression for different type of

disturbance signals. If l(t) is the impulse signal δ(t) than its

Laplace transform is equal to the unity. In addition, taking into

consideration that lims→0G(s) = g0, expression (29) resumes

to:

lim
s→0

s ·G(s) = g0 · lim
s→0
s = 0 (30)

This expression allows us to conclude that the closed loop

system will always be able to absorb disturbance impulses

regardless the controller type.

Let’s proceed by increasing the disturbance order now for

a step type input h(t). Since L{h(t)} = 1
s

, expression (29)

take the following format:

lim
s→0

s ·G(s) ·
1

s
= g0 (31)

Since g0 is equal to the product of a0 and c0 and since

c0 6= 0 is assumed than, in order for (31) result to be zero, the

controller coefficient a0 must be equal to zero. For this reason,

to completely suppress step disturbances, the controller type

must be one. In other words it must have a pole at the origin.

Now for a ramp type input disturbance, and performing the

same steps as above, expression (32) is obtained.

lim
s→0

s ·G(s) ·
1

s2
= lim
s→0

G(s)

s
(32)

The former limit can be expanded as:

lim
s→0

gn+m · s
n+m + · · ·+ g2 · s

2 + g1 · s+ g0
s

(33)

Hence, for a complete ramp disturbance rejection, it is

straightforward to see that, at least, both g1 and g0 must be

zero. If all the C(µ) coefficients are assumed non-zero than

this disturbance rejection only can be achieved if, at least, a0
and a1 are equal to zero. In this case the controller type will

increase to 2.

This last case, together with the previous two, allows us

to foresee a pattern for the controller type as a function

of disturbance order. In fact, if the disturbance can be

mathematically expressed as a n order impulse integral, than

at least a n type controller is needed to fully suppress the

disturbance effect.

This conclusion cannot be extrapolated for other signal

types. For example, let’s assume a a ω frequency sinusoidal

signal l(t) = sin(ωt), represented in Laplace domain by

L(s) = ω
s2+ω2 . If one attempts to apply the final value theorem

then:

ω · lim
s→0

s ·G(s)

s2 + ω2
=

ω · lim
s→0

gm+n · s
n+m+1 + · · ·+ g1 · s

2 + g0 · s

s2 + ω2

(34)

It’s easy to see that the above expression is always equal to

zero. So one may think that even a zero type controller can

be able to suppress the disturbance effect from the output.

However this is not the case. It’s not possible to bypass

sinusoidal type disturbances with the same controller structure

as for the impulse type despite the result obtained from (34).

Sinusoidal disturbance cancelation is a hard problem and the

reader is addressed to [8], [5] and [4] for more details. The

reason we cannot treat impulse and sinusoidal disturbances

in the same way is that one has applied the final value

theorem to an expression that has imaginary conjugate poles.

When this situation happens, the final value theorem cannot

is not accurate since it gives the same polynomial controller

condition for both impulse and sinusoidal disturbances.

The above referred table is replicated in this document, with

the sinusoidal disturbance type and including an extra table

line for a generic k order disturbance. This table, just like the

one published in [7], only gives a suggestion regarding the

controller order to be used.

TABLE I
CONTROLLER ORDER SELECTION AS A FUNCTION OF SIGNAL

Disturbance

type

A(µ)
degree

B(µ)
degree

P (µ)
degree

Condition

None n− 1 n− 1 2n− 1 -

Impulse n− 1 n− 1 2n− 1 -

Step n n 2n a0 = 0
Ramp n+ 1 n+ 1 2n+ 1 a0 = 0,

a1 = 0
k order n+k−1 n+k−1 2n+k−1 a0 = 0

· · ·

ak−1 = 0

This value must also take into consideration that, in order

to have an invertible Sylvester matrix, for a n order system

the controller must have order equal to n − 1 leading to a

characteristic polynomial of order 2n− 1.
However, some of the A(µ) controller polynomial

coefficients may be already known after assuming complete

elimination of some disturbance type. For example, assuming a

step input disturbance, a0 = 0. In this context a lower number

of equations are required to make square the Sylvester matrix.

Taking into consideration this step type disturbance input, and

for a m order controller, one have m − 1 unknowns about

polynomial A(µ). Assuming that the order of polynomial

B(µ) is also equal tom and that the system order is n than, by

be applied. For this reason the fourth column of Table I in [7]

some modifications, and labelled Table I. In this case without

DISTURBANCE TYPE
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observing (21), and since a0 is known, the vector of unknowns

x has now 2n + 1 entries. Hence the Sylvester matrix has

(n+m+ 1) lines and 2m+ 1 columns. In order for it to be

squarem must be equal to n. For this reason, the characteristic

polynomial has order 2n. The third line in the P (µ) degree

column of Tab. I condensates this conclusion.

The same idea can be applied to the case one wants to

completely suppress a ramp type disturbance effects. In this

case the lower order controller that can accomplish this task

has a0 = a1 = 0. The vector x includes 2m elements. This

lead to the constraint m+n+1 = 2m for Σ to be invertible.

That is m = n+1 and P (µ) is now a 2n+1 order polynomial.

Once again this result can be observed in the fourth line of

Finally, for a m order controller to be able to suppress a k

order disturbance, the lower k coefficients of A(µ) must be

equal to zero. This fact leads to a a k type controller. That

is, one in which a0 = · · · = ak−1 = 0. For this reason the

vector of unknowns x has now 2m− k + 2 elements. For Σ

invertibility, 2m− k+ 2 must be equal to n+m+ 1. That is

m = n + k − 1 leading to a 2n + k − 1 order characteristic

polynomial.

is only a guideline. In fact there is no absolute need for a

square Sylvester matrix if only an approximated solution is

enough. Usually this least squares solution can be sufficient

to ensure closed-loop system specifications while leading to

lower order controllers. Additionally the controller numerator

order do not need to be equal to the denominator order.

However giving too much freedom will violate the basilar

principle of CDM: to be an easy application technique.

IV. CONCLUSION

The CDM method cornerstone relies on the design

simplicity from the user point-of-view. Indeed, if the system

model is known, the control designer only needs to define

two things: the value of τ and the controller order. The

later can be established taking into account the expected

system disturbance shape. The relationship between the CDM

controller order and the disturbance type was first published

by [7]. However an error was detected and pointed-out in

the present work. Moreover, the above mentioned table, was

expanded in order to enclose any k order type disturbance.
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