
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1416

Abstract—Cloud virtualization technologies are becoming more

and more prevalent, cloud users usually encounter the problem of how

to access to the virtualized remote desktops easily over the web

without requiring the installation of special clients. To resolve this

issue, we took advantage of the HTML5 technology and developed

web-based remote desktop. It permits users to access the terminal

which running in our cloud platform from anywhere. We implemented

a sketch of web interface following the cloud computing concept that

seeks to enable collaboration and communication among users for

high performance computing. Given the development of remote

desktop virtualization, it allows to shift the user’s desktop from the

traditional PC environment to the cloud platform, which is stored on a

remote virtual machine rather than locally. This proposed effort has

the potential to positively provide an efficient, resilience and elastic

environment for online cloud service. This is also made possible by the

low administrative costs as well as relatively inexpensive end-user

terminals and reduced energy expenses.

Keywords—Virtualization, Remote Desktop, HTML5, Cloud

Computing.

I. INTRODUCTION

N cloud computing environment, there are various important

issues, including standard, virtualization, resource

management, information security, and so on. Among these

issues, desktop computing in virtualized environment has

emerged as one of the most important ones in the past few

years. Currently, users no longer use a powerful,

more-than-required hardware but share a remote powerful

machine using light weight thin-client [1]. A thin-client is a

stateless desktop terminal that has no hard drive. All features

typically found on the desktop PC, including applications,

sensitive data, memory, etc., are stored back in the server when

using a thin client. These thin clients may not necessarily be a

totally different hardware but can also be in the form of PCs.

Thin clients, software services, and backend hardware make up

thin client computing, a remote desktop computing model.

In current remote desktop solutions, there is one instance of

the operating system running over a powerful remote server

which supports multiple users logged in to it remotely. There

are many obvious problems in this scenario; for instance,

imbalance in loads of different remote servers and inherent

sharing of the operating system instance among multiple users.

To solve these problems, adopting virtualization technology [2],

[3] in cloud environment becomes a major trend. Virtualization

technology acts as a central component that can achieve the

S.T. Wang and H.Y. Chang are with the National Center for

High-Performance Computing, Taiwan, R.O.C. (e-mail: stwang@nchc.org.tw
jerry@nchc.org.tw).

purpose of cloud platforms and services, and it is a promising

approach to consolidating multiple services onto a smaller

number of computing resources. A virtualized server

environment allows computing resources to be shared among

multiple performance-isolated platforms called virtual

machines [4], [5]. A virtual machine is a software

implementation of a machine that executes related programs

like a physical machine. Each virtual machine includes its own

system kernel, OS, supporting libraries and applications. A

hypervisor provides a uniform abstraction of the underlying

physical machine, and multiple virtual machines can execute

simultaneously on a single hypervisor. Decoupling of virtual

machine from the underlying physical hardware is able to allow

the same virtual machine to be started and run on different

physical environments.

Considerations for an individual user's desktop in cloud

computing environment, the virtual desktop [6] has received

great interests in virtualization research community. Many

authors [7]-[9] have realized the concept of desktop

virtualization. In a traditional computing environment, users

need to locally install operating systems and applications under

a granted license before use. Software users may be burdened

with many complex tasks in terms of software installation,

configuration, updating and even troubleshooting when

dependency on the host operating system causes compatibility

issues. For the system provider there are two alternative

methods of making the platform available. One is to develop

software based on Web technologies. This not only requires

significant work, but may also encounter compatibility

problems with the numerous browsers. The second approach is

based on desktop virtualization, which separates the

presentation and execution of applications. This provides a

transparent way to deliver an application based remote virtual

desktop.

In this paper, we aim at the adoption of desktop virtualization

and developed web-based interface following the cloud

computing concept. We implemented a sketch of clientless

remote desktop that seeks to enable collaboration and

communication among users, which is efficient, resilience and

independent of the operating system. The remote desktop can

be accessed from any OS platform through any HTML5

compliant browser like Internet Explorer, Mozilla Firefox,

Google Chrome, Safari, Opera, etc. So our implementation can

make such a service is simple and easy to use and allow users to

access the terminal which running on remote desktop from

anywhere, any devices and without requiring the installation of

special clients.

The rest of this paper is organized as follows. Section II lists

Shuen-Tai Wang, Hsi-Ya Chang

Development of Web-Based Remote Desktop to

Provide Adaptive User Interfaces in Cloud Platform

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1417

the related works. Section III gives descriptions of architecture

and platform. Section IV gives some details of the

implementation. Section V discusses future work and

concludes.

II. RELATED WORKS

Currently, many research communities have realized the

concept of desktop virtualization. We also tried many products

before deploying virtual desktop and developing remote

desktop interface. Following two technologies provide the low

cost computing using remote desktop virtualization. These both

are proprietary products.

A. Citrix XenDesktop

Citrix XenDesktop [10] is a suite of desktop virtualization

products from Citrix Systems. Through its bundled

components, it can deliver several different types of virtual

desktops. The core components are:

1) XenServer: It uses Xen [11] hypervisor to create and run

multiple virtual machines on the physical machine.

2) Desktop Delivery Controller: It authenticates users,

manages user's virtual desktop environments and

establishes connections between users and the virtual

desktops.

3) Desktop Receiver: It is installed on user's endpoint

devices.

4) Virtual Desktop Provisioning: It provisions server, creates

and manages virtual desktops from a single desktop image

on demand.

B. VMware View

VMware View [12] is a commercial desktop-virtualization

product developed by VMware that allows end users to access

their virtual desktop. The computation or execution of

application happens at remote place and users can access the

desktop from multiple locations. VMWare View has following

components.

1) VMWare server: It is an enterprise-level computer

virtualization product. It runs on host Operating System as

a software.

2) View Client Software: This software runs on user's PC or

thin client. It is used to access user's desktop running over

virtual machine.

3) View Connection Server: It is for user authentication by

using Window Active Directory. After authentication, it

redirects request to appropriate VM running over server.

4) View Administrator: This is Web-based application. It

allows administrators to configure View Connection

Server, deploy and manage View desktops, etc..

Using XenDesktop or VMware View, users can access their

desktop from anywhere and anytime where Internet access is

available. But both are commercial products, deployment of

this product is not affordable by educational institutions or

small enterprises. The most important is the remote desktop

interface is not web-based. It has to install some software on

user's endpoint devices such as thin client or PCs.

III. ARCHITECTURE

A. System Architecture

Fig. 1 below provides an overview of the logical architecture

for a standard, three tiers implementation of clientless remote

desktop. When a client (computer or mobile device) requests a

remote desktop from terminal server (server can be hosted

privately in virtual machine on the Intranet), it connects to web

server and open a widget to establish a WebScoket [13] to the

backend terminal server. A terminal proxy generally sits on the

gateway of a corporate network. The terminal proxy will

interrupt the communication and check if that session is already

present in it. If it is present, it would provide the session

information to the web server, and act as a bridge between

client and terminal server. If it is not present, the proxy will set

up a new session for it, and the request is forwarded over

network to the terminal server which running on virtual

machine. The terminal server receives the request (from the

web server), processes it, and sends back the response.

Fig. 1 System architecture

B. Software Architecture

Fig. 2 illustrates the software stack of our cloud platform.

Our system is entirely web-based that way the end user doesn’t

need to download and install any tools or plugins on his/her

computer. In particular, this enables accessing our interface

from a wide range of devices, including mobile devices such as

Smartphone or Pad.

Fig. 2 Software architecture

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1418

The basic components are as follows:

1) Hardware: There are many physical devices including

CPU, memory, hard disk, NIC (Network Interface Card),

etc.

2) Hypervisor: We adopt KVM [14] to attain virtualization

aim. KVM consists of a loadable kernel module that

provides the core virtualization infrastructure and a

processor specific module. KVM also requires a modified

QEMU although work is underway to get the required

changes upstream. Using KVM, we can run multiple

virtual machines running unmodified Linux or Windows

images..

3) Libvirt APIs: Libvirt [15] is an open source API, daemon

and management tool for managing platform virtualization.

It can work with a variety of hypervisors in the

development of a cloud based solution. Thus, we employ

these APIs to control and manage our KVM, and we can

switch the underlying hypervisor technology at a later

stage with minimal efforts.

4) PHP: We adopt the PHP program language to build all web

pages. PHP is an open source server-side scripting

language designed for Web development to produce.

5) MySQL: MySQL is the world's most used open source

relational database management system (RDBMS) that run

as a server providing multi-user access to a number of

databases.

6) Guacamole [16]: It is an HTML5 web application that

supports graphical access via remote desktop protocols

directly in the browser, without the need for additional

plugins.

7) Google Web Toolkit [17]: While our web based interface

is built using a Model-View-Controller (MVC) based

Google Web Toolkit (GWT) framework. GWT is a

development toolkit for building and optimizing complex

browser-based applications. The GWT SDK provides a set

of core Java APIs and Widgets. These allow us to write

AJAX applications in Java and then compile the source to

highly optimized JavaScript that runs across all browsers.

C. Cloud Platform

Table I shows the specification information of our cloud

platform named Formosa 3. Formosa 3 [18] is a 64bits

high-performance Beowulf cluster located within Southern

Business Unit of the National Center for High Performance

Computing (NCHC) [19]. It consists of 76 IBM X3550M3

servers as its compute nodes. This self-made cluster was

designed and constructed by the 'HPC Cluster Group' at NCHC

for cloud service and came online in 2012. Each node has two

Six-Core Intel Xeon x5660 2.8GHz processors and 48GB of

DDR3 registered ECC SDRAM. All nodes were connected on

the InfiniBand high speed network and a private subnet with

1000 Mbits/s Gigabit Ethernet. An additional 4 nodes are used

as front ends to interface with cluster, and 4 nodes as storage for

the user file systems by Parallel File System.

TABLE I

FORMOSA 3 CLOUD CLUSTER SPECIFICATION

CPU Intel Xeon x5660 six cores 2.8GHz

Hard Disk 80GB SSD

Memory 48GB DDR3 Registered ECC SDRAM

Network 4x QDR 40Gb Infiniband and Gigabit Ethernet

Operating System CentOS 6.3

Hypervisor Kernel-based Virtual Machine

IV. IMPLEMENTATION

The web-based remote desktop system allows more than one

person to collaborate or execute application remotely in

real-time. Currently we adopt GWT to allow the use of existing

Java knowledge and tools to build high performance, desktop

web applications. GWT abstracts away many complexities of

web application development by not requiring us to learn

Javascript and HTML. For terminal proxy, we integrated the

Guacamole to make the desktops accessible via Virtual

Network Computing (VNC) [20], Remote Desktop Protocol

(RDP) [21] and SSH can run either on the application server

itself or on a different computer on the network. These

protocols generally provide methods for accessing a remote

virtual desktop. It rests on today's web standards: AJAX, JSON

and HTML5 as well. This section aims to explain the details of

implementation involved with Virtualization Manager,

Guacamole Integration and Session Controller.

A. Virtualization Manager

Virtualization Manager provides virtualization of operating

system and customization of remote desktop environment. It

allows us to quickly and easily manage the virtual environment

with functionality for virtualization desktop, virtualization

monitoring, virtualization storage, and much more. The

development of this module is based on KVM and Libvirt; it

was designed according to the user requirements. This module

is responsible for allocating computing resources of terminal

servers and hypervisors dynamically. This module also

manages the user connection sessions and authenticating

accounts information. The user session begins when the user

accesses the desktop and ends when the user closes the

connection from the web browser. It plays a role of bridge

between application servers and client devices. It applied the

Secure Shell and HTTP protocol to provide the single entry

website.

Fig. 3 Guacamole architecture

B. Guacamole Integration

The Guacamole software is split into multiple packages, one

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1419

package providing the web application, others providing the

native components (proxy daemon and library) or support for

specific protocols. Fig. 3 shows the architecture of Guacamole.

When users opening the terminal widget in our web page. The

desktop web application will connect to a Guacamole server.

The Guacamole client, written in JavaScript, is served to users

by Apache Tomcat within the Guacamole server. Apache

Tomcat is an open source web server and servlet container. On

the Guacamole server-side, the Guacamole web application

runs on an Apache server with a servlet container and then

reads the Guacamole protocol and forwards it to the guacd. It

acts as a proxy that translates graphical output from VNC and

RDP into XML and vice versa. Once loaded, the client connects

back to the server over HTTP using the Guacamole protocol.

The guacd is the heart of Guacamole which dynamically

loads support for remote desktop protocols and connects them

to remote desktops based on instructions received from the

Guacamole web application. In fact, the guacd is a daemon

process which is installed along with Guacamole and runs in

the background, listening for TCP connections from the web

application. The guacd also does not understand any specific

remote desktop protocol, but rather implements just enough of

the Guacamole protocol to determine which protocol support

needs to be loaded and what arguments must be passed to it.

Actually, The guacd interprets the contents of the Guacamole

protocol, connecting to any number of remote desktop servers

on behalf of the user.

C. Session Controller

For controlling the user's session, our system has a session

server to perform the role of virtualization controller, and to

manage user’s connection and accounting information. The

session controller also communicates with application servers

to deliver the virtual desktop. Besides, the session controller is

deployed on the GWT to provide the single web-based portal

for user login. It also enhances the system security and

elasticity by applying the centralized control of applications

and files.

While implementing our cloud platform for remote desktop,

we came across several issues that have previously not been

addressed. For example, for accessing the remote desktop

which is streamed from Guacamole, due to the virtual machine

may execute on different physical machines every time. This

can be troublesome if we provide a fixed public IP address and

port for connecting to the user’s desktop of virtual machine. So,

we use iptables and thus setup port forwarding connections to

the virtual machine that user launched. Our interface will

allocate a mapping port dynamically while user opening the

terminal widget in our web page. After that users can connect to

the Guacamole terminal proxy with the dedicated IP address of

and the port which will be forwarded to the appropriate

physical machine which is currently hosting the user's virtual

machine.

On the other hand, to speed up the transmission rate of

remote desktop, the terminal servers also supports both

multicast and unicast transmissions in our virtualization

environment. For unicast connections, either UDP or TCP can

be used. Since TCP provides reliable communication and flow

control, it is more suitable for unicast sessions. Multiple TCP

client sessions sharing a single desktop may have different

bandwidths, so an algorithm which sends the updates at the link

speed of each client will be developed. For UDP clients, the

system controls the transmission rate because UDP does not

provide flow and congestion control. Several simultaneous

multicast sessions with different transmission rates can be

created at the system.

Fig. 4 The cloud platform web portal

Fig. 4 shows the web portal of our cloud platform, once user

has logged in he/she should be able to choose which widget

wants to use.

Fig. 5 Web-based remote X-window terminal

Fig. 5 illustrates the X-window terminal widget, the main

task of this widget is to allow user to access to back-end servers

via x11vnc through a web-based interface. This feature also

allows the other server which installed different operating

system to be accessed natively from a mobile device such as a

tablet.

Unlike X-window terminal widget, Fig. 6 is web-based SSH

terminal widget. SSH is a text protocol, the implementation of

this widget is actually a combination of a terminal emulator and

SSH client, because the SSH protocol isn't inherently graphical.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1420

So this widget emulates a terminal on the server side by

Guacamole, and draws the screen of this terminal remotely on

the client.

Fig. 6 Web-based remote SSH terminal

V. CONCLUSION

In this paper, we aim at the adoption of desktop virtualization

and developed web-based interface following the cloud

computing concept. We implemented a sketch of clientless

remote desktop based on Google Web Toolkit framework. The

remote desktop can be accessed from any OS platform through

any HTML5 compliant browser. So our development can make

such a service is simple and easy to use and allow users to

access the terminal which running on remote desktop from

anywhere, any devices and without requiring the installation of

special clients. Given the development of web-based remote

desktop, we seek to enable collaboration and communication

among users, which is efficient, resilience and independent of

the operating system.

Currently, the remote desktop normally enforces

authentication, requiring all users to have a corresponding set

of credentials. We plan to removes the authentication, giving

anyone from our authenticated web server can access to the

desktop directly in the near future. Also, we plan to reduce the

communication overhead of terminal proxy and adapt some

smart management strategies for physical machines to prevent

energy waste in cloud platform.

REFERENCES

[1] J. Nieh, S. J. Yang, and N. Novik, “A Comparison of Thin-Client

Computing Architectures,” Technical Report CUCS-022-00, Department

of Computer Science, Columbia University, Nov. 2000.
[2] L. Nussbaum, F. Anhalt, O. Mornard and J.-P. Gelas, “Linux-based

virtualization for HPC clusters,” Linux Symposium, pp. 221-234, July

2009.
[3] G. Goth, “Virtualization: Old Technology Offers Huge New Potential,”

IEEE Distributed Systems Online, vol. 8, no. 2, 2007.
[4] R. A. Meyer and L. H. Seawright, “A Virtual Machine Time-Sharing

System,” IBM Systems Journal, vol. 9, no. 3, 1970.

[5] R. P. Goldberg, “Architecture of Virtual Machines, “National Computer
Conference Proceedings, AFIPS Press, vol. 42, pp. 309-318, June 1973.

[6] A. Sultana, B. Daimary, M. Chettri, J. Joseph, “Virtualized Remote Web

Desktop,” IEEE NCETACS National Conference on Emerging Trends
and Applications in Computer Science, 2012.

[7] M. Miller, “Cloud Computing: Web-Based Applications That Change the

Way You Work and Collaborate Online,” Que Publishing, 2009.
[8] H. Lee, “Design for management software of desktop virtualization

solutions,” IEEE Information and Communication Technology

Convergence, ICTC 2010.
[9] L. Yan, “Development and application of desktop virtualization

technology,” IEEE Communication Software and Networks ICCSN,

2011.
[10] Citrix XenDesktop.

http://www.citrix.com/products/xendesktop/overview.html, 2012.

[11] Xen hypervisor. http://www.xen.org/.
[12] VMWare View. http://www.vmware.com/products/view/overview.html,

2012.

[13] V. Wang, F. Salim, P. Moskovits, “The Definitive Guide to HTML5
WebSocket,” 2013.

[14] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. “kvm: the

Linux Virtual Machine Monitor,” In Proceedings of the Linux
Symposium, vol. 1, pp. 225-230, 2007.

[15] Libvirt - The virtualization API. http://libvirt.org/

[16] Guacamole - HTML5 Clientless Remote Desktop. http://guac-dev.org/
[17] P. Chaganti , “Google Web Toolkit: GWT Java AJAX Programming,”

Packt Publishing, 2007.

[18] NCHC Formosa 3 Cloud Cluster. http://formosa3.nchc.org.tw/
[19] NCHC, National Center for High-performance Computing.

http://www.nchc.org.tw/
[20] T. Richardson et al., “Virtual Network Computing,” IEEE Internet

Computing, vol. 2, no. 1, Jan./Feb. 1998, pp. 33–38.

[21] RDP - Remote Desktop Protocol.
http://en.wikipedia.org/wiki/Remote_Desktop_Protocol

