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Jet-Stream Airsail: Study of the Shape and the
Behavior of the Connecting Cable

Christopher Frank, Yoshiki Miyairi

Abstract—A Jet-stream airsail concept takes advantage of aerology
in order to fly without propulsion. Weather phenomena, especially jet
streams, are relatively permanent high winds blowing from west to
east, located at average altitudes and latitudes in both hemispheres.
To continuously extract energy from the jet-stream, the system is
composed of a propelled plane and a wind turbine interconnected by
a cable. This work presents the aerodynamic characteristics and the
behavior of the cable that links the two subsystems and transmits
energy from the turbine to the aircraft. Two ways of solving this
problem are explored: numerically and analytically. After obtaining
the optimal shape of the cross-section of the cable, its behavior
is analyzed as a 2D problem solved numerically and analytically.
Finally, a 3D extension could be considered by adding lateral forces.
The results of this work can be further used in the design process of
the overall system: aircraft-turbine.

Keywords—Jet-stream, cable, tether, aerodynamics, aircraft,

I. INTRODUCTION

S INCE its origin, aviation has found a powerful source
of inspiration in nature observation. Indeed, Leonardo

da Vinci, an Italian Renaissance engineer and inventor drew
detailed plans of a series of flying machines based on the flight
of birds. More recently, famous pioneers such as Clément Ader
observed how birds are making profit of wind and gusts so
as to fly effortless and cover long distances [1]. From these
observations, he concluded that flight had to exploit aerology.
This is done, in particular, by modifying the wing’s shape
during the flight. This idea has been applied to Ader’s first
plane Eole: it was fitted with six handles to adapt the airfoil
geometry (camber, twist, surface and position). However, the
analogy with birds did not include wing flapping, since Ader
had directly opted for the “glider + propeller” formula which
has proven full of future! Aviation development has moved
away over time from its original nature-based inspiration. As
a consequence of the increase of flight speed, planes have
become more and more rigid and are equipped with hinged
control surfaces instead of flexible wings. Even if sailplanes
are not meant to look like birds, they exploit the potential
of “free flight” offered by atmospheric phenomena. However,
gliding is a sport involving a relatively small number of
enthusiasts: it is far from commercial aviation which we are
interested in.
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The idea of this project is to take advantage of aerology
in order to fly without propulsion, but on a scale well above
gliding in terms of both flight frequency and travel distance.
Weather phenomena that can make it possible are jet streams
which are relatively permanent high winds blowing from west
to east, located at average altitudes and latitudes in both
hemispheres. As a sailing boat (foil and drift/keel), a plane
can extract energy from high winds. Thus, it can travel long
distances by taking advantage of a wind gradient between two
different altitudes. As a sailing boat, it is also quite possible
to fly different courses with respect to the wind (from tailwind
to headwind), and go much faster than the wind in favorable
conditions. Thus, in addition to crossing long distances using
only energy from the jet-stream, it is conceivable to achieve
it at relatively high speeds.

In order to continuously extract energy from the jet-
stream, the system will be composed of two sub-systems
interconnected by a cable: one inside the jet-stream, the other
outside. The wind difference is the cornerstone to get a positive
propulsive balance for the system. A plane with a propeller is
linked to a subsystem containing a wind turbine providing the
necessary energy. This system can work if the turbine faces a
faster airflow than the propeller (e.g. plane flying downwind
in the jet-stream, turbine outside) and if the efficiencies are
high enough to allow energy transmission from the turbine to
the propeller.

As presented on Fig. 1, the two subsystems are linked by
a cable that can have a length of several hundreds of meters.
Therefore, its behavior must be taken into account for the
design and the feasibility study of the concept.

Fig. 1. Principle of the concept [2]

Jet-stream exploitation to propel planes is not a completely
new idea. Delft University has been working on the design
of an aircraft capable of flying around the world on solar
and wind energy: they have come up with the notion further

airsail, wind.
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developed in this project of using two interconnected planes,
one of them flying inside the jet-stream. The French Aerospace
Laboratory (ONERA) is also working on the feasibility of such
concepts [2]. In order to precisely design the two subsystems
and the cable, a detailed study of the behavior of the cable
is essential. Since the idea of linking two aircraft by a
several-kilometer cable is new and innovative, no experimental
data or information are available. Therefore, one of the most
challenging part of the design remains in the characterization
of the cable in terms of behavior, shape and drag generated.
This part will be tackled in this project.

Firstly, the drag coefficient of the cable must be modeled
based on the cross-section. Once it has been done, an
optimization is performed in order to find the best aerodynamic
configuration. In order to find the drag along the cable, the
wind gradient must be modeled by studying the jet-stream’s
characteristics. Secondly, different methods of calculation are
used to compute the shape of the cable and the results are
checked with simple and well-known cases. Finally, lateral
forces are considered, implying a 3D matrix analysis.

II. REVIEW OF PREVIOUS WORK

As previously mentioned, jet-stream exploitation for propel
planes is not a completely new idea. So far, several approaches
have already been investigated: a linked gliders concept, a
propeller-turbine concept, a dynamic flight through horizontal
wind gradient, etc. One of the most famous concepts is the
airplane powered by an engine, which is fed by a towing line
(tether) linked to a turbine.

The most crucial challenge in the former type of projects
such as CONDOR from Boeing [3], [4], [5] (Fig. 2), and
Perseus from NASA/Aurora Flight Sciences [6], [7] is to
use glider type of aircraft which are powered by engines.
Especially, the key factor of these projects is to develop
engines that can provide enough thrust even if the aircraft
fly at high altitude (the ceiling of CONDOR is 67,000 ft).

Fig. 2. The airplane of CONDOR-High Altitude Long Endurance (HALE)
project [3]

Moreover, the latter type of research such as Stratospheric
Towing Project (STRATOW) [8], [9] is mainly focused on
researching the characteristics and the shape of towing line.
As presented on Fig. 3, the two airplanes are linked by a cable
that can measure up to several hundreds of meters because
large wind gradients are required between them. STRATOW
concept, i.e. towing a glider as a kite, becomes feasible thanks

to the development of new materials with extreme strength as
well as very thin tethers.

Fig. 3. The concept of STRATOW [10]

In addition, a numerical model is also presented by some
researchers such as Melkert [11] describing the forces on
the cable and the resulting shape, considering the flight
conditions of the airplane. Besides, simplified models can
be developed using several approximations. Thanks to these
analytical models, the dependence of parameters such as cable
diameter and aircraft speed can be characterized. Especially,
the analytic form plays an important role to validate the
numerical results. Nevertheless, these models are usually based
on very simplifying assumptions and there is a lack of models
including a large number of parameters such as wind gradients
and airfoil-shaped cables.

III. AERODYNAMIC CHARACTERISTICS OF THE CABLE

Before determining the behavior and the shape of the cable,
it is important to identify the corresponding requirements. Two
main functions can be identified: the mechanical link between
the two subsystems and the energy transfer from the turbine
to the aircraft. The material used for each function is different.
The mechanical function tends to be met by using light
and strong materials such as carbon fibers and high-modulus
polyethylene (used for gliders). The electric function can be
met by conducting materials such as cooper.

Using experimental data from Pierre Rebuffet [12], one
can mathematically model the curve which provides the drag
coefficient of a cylinder with a circular cross-section as a
function of the Reynolds number. Since no simple physics-
based model or interpolation function provides an accurate
model over the entire range, the following methodology is
used to approximate the curve:

1) Creation of two vectors of points which are located on
the curve (X-axis and Y-axis)

A. Cylindric Cable with a Circular Cross-Section
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2) Separation of the curve in different intervals
3) Mathematical interpolation using cftool from

Matlab
4) Conversion of the function from the dB-scale to the real

scale
The results of the interpolation as well as the real function
are presented on Fig. 4. As shown, the two curves are almost
confounded, and therefore the approximation is considered to
be accurate enough for this study.

Fig. 4. Comparison between the interpolation and the real curve

The Reynolds number which appears in this project is
between 103 and 5.105. Therefore, the value of the drag
coefficient is close to 1 and consequently very high. Indeed, a
NACA 0012 airfoil with a height of 5 mm generates 12 times
less drag than a circular cable with a diameter of 5 mm. Thus,
it would be profitable to streamline the cable.

Rapid electric estimations demonstrate that the required
cable diameter is relatively small. Therefore, one can
streamline the fibers for energy transmission around the
circular section. An idea is to streamline them according to
an airfoil shape. Several solutions are imagined and the two
most practical and efficient are presented hereafter.

1) Rectangular cross-section: The idea is to keep a
rectangular cable as presented on Fig. 5 and to streamline
it in order to reduce the drag. The goal of this part is to find
the optimum configuration and its benefits on the drag.

The equation of the extrados of the airfoil is given by the
function f and the other notations are presented on Fig. 5.
First, one can notice that the definition of f provides (1).

xA = f−1

(
E

2

)
(1)

In the case of a NACA airfoil with a relative thickness ε, f is
described by (2) found in Jack Moran’s book [13].

f(x) = εc

(
0.2969

√
x

c
− 0.126

x

c
− 0.3516

(x

c

)2

+0.2843
(x

c

)3

− 0.1015
(x

c

)4
)

(2)

Fig. 5. Rectangular cross section within the airfoil

Since the aerodynamic center is approximately at 25% of the
chord of the airfoil, the center of mass must be located in front
of it so that the airfoil remains statically stable. Nevertheless,
20% of the chord is selected to keep a safety margin. It can
be mathematically described by (3).

c = 5

(
xA +

L

2

)
(3)

Considering the drag coefficient of a symmetric NACA airfoil
CD, the drag is computed by (4).

D =
1

2
ρSV 2 0.1134

Re0.2
(4)

Fig. 6 represents the drag as a function of the relative
thickness. As shown, there is an optimum for the relative
thickness at ε = 0.27.

Fig. 6. Computed drag as a function of the relative thickness

Using this configuration, Fig. 7 displays the shape of both
the airfoil and the cable.

2) Streamlined cable: In this section, the cable goes until
the leading edge of the airfoil and is streamlined in order to
decrease the drag even more. The surface of the airfoil in front
of the rectangle from Fig. 8 is called SBA and the center of
mass of the latter is called xGBA

. The conservation of the
different areas provides (5).

SBA + ε (xB − xA)
2
= Stot (5)

B. Airfoil-Shaped Cable
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Fig. 7. Rectangular cable within a NACA airfoil

By constraining the center of mass to be at 20% of the chord,
(6) is provided:

SBAxGBA
(xA) + (Stot − SBA(xA))

xB + xA

2
= 0.2 c Stot

(6)
Equation (7) provides the relationship between the relative
thickness ε and the location of the points A and B.

ε =
2f(xA)

xB − xA
(7)

Finally, the location of the center of mass can be expressed
by (8).

xGBA
=

2

SBA

∫ xA

0

xf(x)dx (8)

The parametric Matlab tool enables the plot of the airfoil
and the cable. An example is given on Fig. 8.

Fig. 8. Rectangular cable within a NACA airfoil with full leading edge

Based on Nathalie Bivaud’s work [14] and using a new
and more precise interpolation model, one can determine a
parametric drag coefficient of a symmetric NACA airfoil. Data
from R. Sheldahl and P. Klimes [15] are also used. The drag
coefficient can be written as a function of three constants a, b
and c as defined by (9).

CD = a.Reb + c (9)

Those three coefficients only depend on the relative thickness
ε and their expressions are provided by (10), (11) and (12).

a = 0.0003515ε4 − 0.02859ε3 + 0.8785ε2 − 12.191ε+ 69.82
(10)

b = 3.364.10−5ε3 − 0.002318ε2 + 0.05664ε− 1.013 (11)

c = 0.0001ε+ 0.0038 (12)

D. Results

An optimization with Matlab has been used in order to
find the best relative thickness: ε̄ = 12.5% when the rear of the
rectangular cable is in contact with the border of the airfoil.
Fig. 9 shows the drag per unit length generated as a function
of the relative thickness for nominal conditions.

Fig. 9. Evolution of drag with respect to the relative thickness of the airfoil

It allows a very elongated airfoil with a reduced drag.
Finally, another configuration is also studied: a cable which
fills the front of the airfoil. In this case, the manufacturing
of the cable would probably be more difficult since the cable
follows the exact shape of the airfoil from its leading edge
to the rear of the cable. There is no more “straight line”
curve. The results are presented in Table I. It appears that
the optimum is given by a cable which fills the front of the
airfoil. Moreover, even a simple fairing would considerably
reduce the drag (divided by at least 10).

TABLE I
COMPARISON OF UNITARY DRAG FOR DIFFERENT CONFIGURATIONS

Type of cross-section Drag (N)

Circular 95.55
Rectangular cable within airfoil 8.18

Rectangular cable within airfoil with streamlined leading edge 6.62
Full leading edge 6.61

IV. MODELING OF THE JET-STREAM

In order to determine the drag of the cable, the relative
speed between the wind and the cable must be determined.
Moving with the whole system, only the speed of the wind
can be considered. Using the data from Météo France (the
French national meteorological service), the speed of the
wind is plotted as a function of altitude and season on
Fig. 10. Therefore, a piecewise approximation is computed
and presented in Table II. In these formulas, the altitude h is
in meters.

TABLE II
PIECEWISE APPROXIMATION OF THE RELATIVE JET-STREAM WIND FOR

NORTHERN HEMISPHERE

Season h ≤ 12 km h ≥ 12 km

Summer V = 0.0038h− 2.2015 V = −0.0037h+ 86.56

Winter V = 0.0017h+ 0.8969 V = −0.0029h+ 56.476

C. Effects of the Relative Thickness
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Fig. 10. Wind profile as a function of altitude

V. NUMERICAL COMPUTATION OF THE SHAPE OF THE
CABLE

A. Principle

In order to numerically solve the problem, the cable is
discretized in small straight pieces on which the Newton’s
second law is applied. The different parameters taken into
account are: the variation of the density along the cable with
altitude, the variation of the drag coefficient, the drag with
the speed, and the variation of the speed due to the wind
gradient along the cable. Nevertheless, the drag due to the
tangential component of the speed is neglected. Therefore,
only the normal component of the drag is taken into account
for the drag computation: Vn = V sin θ.

Fig. 11. Equilibrium of a small piece of the discretized cable

As displayed in Fig. 11, θ is the angle between the
horizontal and the direction of the cable. If the turbine is
above the aircraft, θ0 is negative and if the turbine is below the
aircraft, this angle is positive. Two different reference frames
are implemented. The first one, called R0, corresponds to
the Earth-Surface Earth-Fixed (ESEF) reference frame and is
considered as the inertial reference frame. −→x0 is the horizontal
axis in the direction of the aircraft speed. Considering a
constant speed and constant altitude cruise,

−→
V is parallel to−→x0. −→z0 corresponds to the downward vertical. The second one,

called Rc is linked to the cable. A rotation of θ around the
Y-axis transforms R0 to Rc.

To perform the calculation, the principle is to start from
two boundary conditions: the tension T0 and the angle θ0
at the turbine. To find those parameters, the equilibrium of
the turbine should be considered. Thus, by considering the
boundary conditions at one end of the cable, it is possible to
go to the other end by applying the second Newton’s law on
each piece of the discretized cable. Moreover, it is assumed
that the direction of the cable is parallel to the resultant of the
forces acting at the boundary of the first piece.

The equilibrium of the forces which is propagated
throughout the cable provides the expression of the tension
(magnitude and direction) at the other end. Equations (13),
(14) and (15) provide the required expressions for the
equilibrium computation.

−→
W = ρc

(
πd2

4

)
dl g −→z0 (13)

−→
D = D−→zc = −1

2
ρ d dl

(
V 2 sin θ sin |θ|)Cx

−→zc (14)

−→
T i = Ti

−→xc = Ti cos θ
−→x0 − Ti sin θ

−→z0 (15)

In the numerical computation, the unknown is
−−→
Ti+1

(Fig. 11). Moreover, the expression of the drag seems unusual
but it is needed to make the resolution as generic as possible.
The idea is based on the fact that the drag must be in the same
direction as the normal velocity. Thus, the use of absolute
value on one of the sin function provides the right direction
to the drag with respect to −→zc . This drag is then expressed in
the ESEF reference frame as shown in (16).

−→
D = D sin θ−→x0 +D cos θ−→z0 (16)

On the one hand, when the turbine is above the aircraft, θ is
negative and therefore, the drag has a downward component.
On the other hand, when the turbine is below the aircraft, θ
is positive and therefore, the drag has an upward component.

B. Iterations
From the known boundary conditions at the turbine

−→
T0,

the equilibrium provides
−→
T1,

−→
T2, etc. The goal is to link the

two subsystems with a given altitude difference. The latter is
computed in order to benefit from a sufficient wind gradient
due to the jet-stream. Consequently, the shutoff parameter is
based on the altitude. Nevertheless, another security criterion
must be implemented for the impossible cases. Thus, a
maximum length for the cable is considered.

At the end of the simulation, the sizing parameters can be
extracted:

• (Tf , θf ): magnitude and angle of the tension applied to
the aircraft

• Tmax: maximal tension in the cable
In order to take into account the diameter of the cable, another
loop is created based on the new diameter found by (17).
d is the diameter of the cable, T the tension and σadm the
maximum admissible constraint for the cable.

d = 2

√
T

πσadm
(17)
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C. Results

Fig. 12 displays the results for different starting angles and
different magnitudes when the turbine is above the aircraft.
The higher the magnitude of the tension is, the darker the color
is. One can notice that for higher tension, the cable becomes
smaller and therefore lighter. Nevertheless, it requires a high
lift from the subsystem which is above. Besides, the closer
the angle is from the horizontal, the longer the cable becomes
so that it is profitable to start from a cable with an initial
angle close to the vertical. However, on a flight dynamic point
of view, this choice implies a good lift-to-drag ratio for the
turbine.

Fig. 12. Results of the simulation

When the turbine is above the aircraft, impossible cases can
appear. Indeed, the combination of a low angle (close to the
horizontal) and a low tension within the cable could prevent
the cable to reach the required altitude difference. On Fig. 13,
one can observe that the faster the aircraft is flying, the longer
the cable is and thus the higher the tension is. For high speed,
the drag becomes even more predominant than the weight of
the cable. Therefore, the cable tends to be longer and the two
aircraft farther.

Fig. 13. Impact of the aircraft speed on the shape of the cable

Fig. 14 presents the results when the turbine is 500 meters
above the aircraft and the initial tension is equal to 50 kN.
Looking at the different shapes, it appears that there exists
a maximum cross-section for the cable after which the case

becomes impossible. This limit is reached when the angle
between the cable and the horizontal goes towards zero at
the bottom end of the cable.

Fig. 14. Impact of the cable’s cross-section on the shape of the streamlined
cable

VI. VALIDATION OF THE NUMERICAL MODEL

Even if the previous observations seem to be physically
coherent, it is important to validate them by comparing the
numerical solution with known and simple analytical solutions.

1) Assumptions: Wubbo Ockels [16] already developed
a set of assumptions to simply and analytically solve this
problem. In this resolution, the weight of the cable is assumed
to be negligible, the drag coefficient is set as a constant equal
to one and the speed is assumed to be constant over the
entire cable. A rapid study shows the validity domain of the
main assumption: a negligible weight. Thus, the ratio D/W
is evaluated in (18).

D

W
=

1
2ρ d dl (V sin θ)

2
Cx

ρc
(
πd2

4

)
dl g

=
2ρCxV

2 sin2 θ

gρcπd
(18)

Fig. 15. Ratio drag over weight with respect to the effective speed and the
diameter of the cable

A. Comparison with the Massless Cable
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In order to evaluate this ratio, the following approximations
are made:

• Cx = 1
• ρc = 1,053 kg/m3 for a carbon cable
• ρ = 0.42 kg/m3 at an altitude equal to 10 km

Finally, the ratio D/W is plotted for different values of V sin θ
and d on Fig. 15. One can conclude that for speeds higher
than 70 m/s and for reasonably small diameters, the ratio
rapidly goes over 20-30 so that the weight could be negligible
compared to the drag. Nevertheless, when the cable has a small
angle of incidence, the effective speed would be small and this
assumption might become wrong.

2) Derivation of the equations: Considering a small piece
of cable and the definition of θ, a small variation of altitude
can be written as dh = dl sin θ. Moreover, a small variation
of tension can be related to a small variation of angle by
the formula: dT = Tdθ. Thus, the differential equation is
described by (19).

dθ

sinθ
=

1
2ρCxdV

2dh

T
(19)

The right hand side of (19) can be easily integrated by
modeling the density by the common exponential model
described by (20) with ρ0 = 1.225 kg/m3 and Hp = 9000 m.

ρ = ρ0e
− h

Hp (20)

The left hand side of (19) can be integrated by setting θ = 2α
as shown by (21).

∫ θ2

θ1

dθ

sin θ
= 2

∫ 2α2

2α1

dα

sin 2α
=

∫ 2α2

2α1

dα

sinα cosα
=

∫ 2α2

2α1

cosαdα

sinα cos2 α
=

∫ 2α2

2α1

tan′ αdα
tanα

=

[
ln

(
tan

θ

2

)]θ2

θ1

= ln

(
tan

θ2
2

)
− ln

(
tan

θ1
2

)
(21)

Finally, (22) presents the tension of the cable as a function
of the altitudes of the two subsystems and the angle between
the end points of the cable and each subsystem.

T =

1
2ρ0CxdV

2

(
e
− h1

Hp − e
− h2

Hp

)
ln

(
tan θ2

2

) − ln
(
tan θ1

2

) (22)

Therefore, there is an analytical expression that links the three
following important parameters:

• The angle between the cable and the lower subsystem θ1
• The angle between the cable and the upper subsystem θ2
• The tension T within the cable

Assuming two of the three previous parameters as known, it
is possible to find the last one. Usually, the conditions at the
turbine are known as well as the tension throughout the cable.

3) Application: Considering a nominal case, the numerical
solution is compared with the analytical solution. As assumed
for the formula, the massless cable is characterized by a
density of 0 kg/m3 and the speed is constant along the cable.
The parameters are:

• V = 50 m/s
• Altitude turbine = 12 km
• Altitude aircraft = 10 km
• T0 = 4 kN
• θ2 = 72◦

• Cable diameter = 5 mm
• Cx = 1
• ρc = 0

Using (22), the unknown θ1 can be expressed by a single
equation presented by (23). Moreover, the numerical result for
the aforementioned conditions is also provided.

θ1 = 2×

arctan

⎛
⎜⎜⎝exp

⎡
⎢⎢⎣ln

(
tan

θ2
2

)
−

1
2ρ0CxdV

2

(
e
− h1

Hp − e
− h2

Hp

)
T

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= 26.4165◦ (23)

Using the numerical computation, the final angle is equal to
θ1 = 26.4133 which corresponds to a relative error around
0.01%. Moreover, the final shape of the cable is presented on
Fig. 16.

Fig. 16. Shape of the massless cable for nominal conditions

4) Improvement of the model: Using the previous model
of the jet-stream, the previous modeling can be improved
by implementing the altitude variable into the speed due to
the wind gradient. Thus, the speed becomes V = VAC +
aV (ha − h) and (22) can be replaced by (24).
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T =
1
2ρ0CxdHp

ln
(
tan θ2

2

) − ln
(
tan θ1

2

)
×

([
(VAC + avha − avh1)

2
+

2HpaV (avh1 − VAC − avha + avHp)] exp

(
− h1

Hp

)

−
[
(VAC + avha − avh2)

2
+

2HpaV (avh2 − VAC − avha + avHp)] exp

(
− h2

Hp

))
(24)

Another well-known problem with an analytical solution is
the catenary. Analyzing the equation of the cable presented on
Fig. 17 would allow us to validate the accuracy of this model.

Fig. 17. Configuration of the catenary

Using the notations from Fig. 17, a small piece of the cable
has a length equal to dl = dx

√
1 + y′(x)2. The Newton’s

second law provides (25).

−→
T ′(M ′) +

−→
T (M) + ρ

πd2

4
gdl × (−−→uy) =

−→
0 (25)

Moreover, T ′
x(M) = T ′

x(M
′) = T0 where T0 is a positive

constant. Using the same argument on the Y-axis, (26) is
written.

T ′
y(M)

T0
− T ′

y(M
′)

T0
− ρπd2

4 gdl

T0
= 0 (26)

Assuming that the tension is parallel to the cable:

y′(x+ dx)− y′(x) =
ρπd2

4 g

T0
dx

√
1 + y′(x)2

Finally, the differential equation is given by (27).

d2y

dx
=

ρπd2g

4T0

√
1 + y′(x)2 (27)

Using y′(x) = sinh (u(x)), one can obtained y′′(x) =

u′(x) cosh (u(x)) = ρπd2g
4T0

cosh (u(x)). The boundary

condition is given by y′(0) = 0 due to symmetry and therefore
the solution is provided by (28).

y(x) =
4T0

ρπd2g
cosh

(
ρπd2g

4T0
x

)
+ λ (28)

This analytical form is plotted in red on Fig. 18 against the
previous numerical solution in blue for nominal conditions.
As observed, the two solutions seem to be very close so that
the two curves are confounded. The relative error between the
two solutions is around 10−3%. Thus, the numerical model is
satisfying for those conditions.

Fig. 18. Comparison between the analytical solution and the numerical
computation for the catenary

The convergence of the model can also be studied by
plotting the relative error concerning the final angle and the
final tension with respect to the size of the system (Fig. 19). As
expected, the accuracy decreases with the size of the pieces,
but even for long pieces, the relative error remains within
acceptable limits.

Fig. 19. Relative error vs. elements size

B. Comparison with the Catenary

C. Convergence Study
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VII. SENSITIVITY ANALYSIS OF THE PARAMETERS AND
SIMPLIFICATIONS

A complete analytical resolution seems impossible
because of the complexity of the equations and the
interrelationships between the different forces. Nevertheless,
several simplifications could be made without reducing the
precision and the accuracy of the simulation.

The wind gradient due to the atmospheric stream is assumed
to be negligible for the drag computation. Thus, by considering
an averaged relative speed, many configurations were tried
and the maximal relative error found was lower than 1%.
Therefore, an averaged relative speed Vm is defined by (29).

Vm =
1

2
(2VAC + aV (ha − ht)) (29)

B. Density

As well as the wind gradient, the density of the air varies
with altitude. This variation causes the variation in drag along
the cable. By assuming this density constant and equal to its
value at the altitude between the two subsystems, the maximal
relative error never goes above 4% for very light and long
cables. Therefore, an averaged density ρm is defined by (30).

ρm =
ρ0
2

(
exp

− ha
Hp +exp

− ht
Hp

)
(30)

1) Cylindrical cable with circular cross-section: For
applications similar to the one in this project, the Reynolds
number can be considered as being between 103 and 5.105.
Therefore, in this range, the drag coefficient can be considered
as a constant equal to:

Cxm = 1.05

2) Cylindrical cable with streamlined cross-section: Since
the aerodynamic optimum was found for a relative thickness
equal to 12.5%, the drag coefficient can be modeled by:

Cxm = 7.439824Re−0.60898 + 0.00505

The different simulations as well as a physical analysis show
that the maximum tension within the cable is experienced at
the top end of the cable and is equal to T0 when the turbine
is above the aircraft and Tf when the turbine is below the
aircraft. In order to find a single expression for this tension, a
mathematical trick is described by (31).

Tmax =
Tf

2

(
1 +

ha − ht

|ha − ht|
)
+

T0

2

(
1− ha − ht

|ha − ht|
)

(31)

VIII. ANALYTICAL SOLUTION

Considering the previous simplifications and assumptions,
the resolution is performed in two steps. Firstly, a constant
angle for the cable is considered in order to understand how
the solution can be derived and secondly, a complete solution
is provided.

The angle between the cable and the horizontal is set to θm
and remains constant along the cable. Therefore by neglecting
the tangential drag, the only force that acts in the direction
of the cable is the projection of the weight. Equation (32)
describes the variation in the tension.

ΔT = ρclπ
d2

4
g sin θm (32)

Based on (32), it is obvious that, if θm is positive (turbine
below), the tension reaches a maximum at the aircraft. The
opposite is also true: if θm is negative (turbine above), the
tension reaches a maximum at the turbine. Equation (33) sums
the forces acting in a direction perpendicular to the cable. One
can conclude that even if the weight always tends to lower the
cable, the drag could rise or lower the cable.

TmΔθ = −ρclπ
d2

4
g cos θm +

1

2
ρmldV 2

mCxm sin θm sin |θm|
(33)

An eight-equation system can then be implemented in order
to solve the problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πd2σadm = 4

(
Tf

2

(
1 +

ha − ht

|ha − ht|
)

+
T0

2

(
1− ha − ht

|ha − ht|
))

Vm =
1

2
(2VAC + aV (ha − ht))

ΔT = ρclπ
d2

4
g sin θm

TmΔθ = −ρclπ
d2

4
g cos θm

+
1

2
ρmldV 2

mCxm sin θm sin |θm|

ρm =
ρ0
2

(
exp

− ha
Hp +exp

− ht
Hp

)
l sin θm = ha − ht

Tm =
T0 + Tf

2
Cxm = 1.05

(34a)

(34b)

(34c)

(34d)

(34e)

(34f)

(34g)

(34h)

Combining (34a), (34c) and (34g), the value of Tf can be
found and is provided by (35).

Tf = T0

2σadm + ρcg(ha − ht)
(
1− ha−ht

|ha−ht|
)

2σadm − ρcg(ha − ht)
(
1 + ha−ht

|ha−ht|
) (35)

A. Wind gradient

C. Drag Coefficient

D. Maximal Tension

A. Solution with a Constant Cable Angle
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Once Tf has been determined, (34a) provides the required
diameter of the cable through (36).

d =

√
2

πσadm

(
Tf

(
1 +

ha − ht

|ha − ht|
)
+ T0

(
1− ha − ht

|ha − ht|
))

(36)
Moreover, (34f) provides the expression of cos θm and sin θm
as a function of the altitudes and the length of the cable.
Finally, (34b), (34d), (34e), (34g) and (34h) provide the final
expression of θf described by (37).

θf = θ0+

−ρclπ
d2

4 g

√
1− (ha−ht)

2

l2 + 1
2ρmdV 2

mCxm
(ha−ht)|ha−ht|

l

Tm
(37)

Now, the length of the cable is no longer given and the
angle no longer constant. The new system of equations is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πd2σadm = 4

(
Tf

2

(
1 +

ha − ht

|ha − ht|
)

+
T0

2

(
1− ha − ht

|ha − ht|
))

Vm =
1

2
(2VAC + aV (ha − ht))

dT = ρcdlπ
d2

4
g sin θ

Tdθ = −ρcdlπ
d2

4
g cos(−θ)

+
ha − ht

|ha − ht|
1

2
ρmdldV 2

mCxm sin2 θ

ρm =
ρ0
2

(
exp

− ha
Hp +exp

− ht
Hp

)
dl sin θ = dh

Cxm = 1.05

(38a)

(38b)

(38c)

(38d)

(38e)

(38f)
(38g)

As done before, the final tension and the diameter are
determined. Those two parameters only depend on the initial
tension and the altitude difference. Moreover, by combining
(38b) and (38c), it is possible to obtain a differential equation
where the variables can be separated. The latter is provided by
(39) and each member of this equation is equal to the same
constant.

dT

T
=

sin θ
2ρmV 2

mCxm(ha−ht)
|ha−ht|ρcπdg

sin2 θ − cos(−θ)
dθ (39)

Setting u = cos(−θ), substitution of variables can be used to
get (40).

ln
Tf

T0
=∫ cos θf

cos θ0

−du
2ρmV 2

mCxm(ha−ht)
|ha−ht|ρcπdg

u2 + u− 2ρmV 2
mCxm(ha−ht)

|ha−ht|ρcπdg

(40)

The goal is to integrate a rational fraction with the parameter
a defined by (41).

a =
2ρmV 2

mCxm(ha − ht)

|ha − ht|ρcπdg (41)

The poles of this rational fraction are u1 and u2 defined by:

u1 =
−1 +

√
1 + 4a2

2a
u2 =

−1−√
1 + 4a2

2a
Therefore, (40) can be transformed into (42).

ln
Tf

T0
=

−1

a(u1 − u2)

∫ cos θf

cos θ0

1

u− u1
− 1

u− u2
du =

1

a(u1 − u2)

(
ln

∣∣∣∣cos θf − u2

cos θf − u1

∣∣∣∣ + ln

∣∣∣∣cos θ0 − u1

cos θ0 − u2

∣∣∣∣
)

(42)

Thus, the final angle can be calculated but there are two
solutions described by (43) and (44) because of the absolute
value:

θf1 =
ha − ht

|ha − ht|×

arccos

⎛
⎝u1 exp

(
a(u1 − u2) ln

Tf

T0
− ln

∣∣∣ cos θ0−u1

cos θ0−u2

∣∣∣) − u2

exp
(
a(u1 − u2) ln

Tf

T0
− ln

∣∣∣ cos θ0−u1

cos θ0−u2

∣∣∣) − 1

⎞
⎠
(43)

θf2 =
ha − ht

|ha − ht|×

arccos

⎛
⎝u1 exp

(
a(u1 − u2) ln

Tf

T0
− ln

∣∣∣ cos θ0−u1

cos θ0−u2

∣∣∣) + u2

exp
(
a(u1 − u2) ln

Tf

T0
− ln

∣∣∣ cos θ0−u1

cos θ0−u2

∣∣∣) + 1

⎞
⎠
(44)

The choice between the two solutions must be done by
numerical observations. Indeed, only one solution remains
physical but it is not always the same answer. The choice
that has to be made corresponds to the resolution of (45).∣∣∣∣cos θf − u2

cos θf − u1

∣∣∣∣ = cte = ω (45)

By definition, u2 would always be negative when the turbine
is above the aircraft and u1 would always be negative when
the turbine is below the aircraft. Therefore, when the aircraft
is above, (46) must be solved.

ω| cos θf − u1| = cos θf − u2 (46)

The solution depends on the relative position of θf with respect
to u2 and cannot be predicted.

When the aircraft is above the turbine, the relative error
on the final angle is lower than 2% for almost every case
close to the nominal conditions. When the turbine is above
the aircraft, the relative error is lower than 1% in almost all
configurations and especially for conditions close to nominal
conditions. The accuracy is improved for high initial tension,
slow speed, small altitude difference and an initial angle close
to the vertical. The precision on the final tension is always
accurate and the error lower than 0.5%

B. Complete Solution

C. Validity Domain
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IX. THREE-DIMENSIONAL SOLUTION

Other concepts of attached aircraft imply lateral forces
and the calculation must be done by considering another
dimension. A numerical solution can be computed using the
same principle as for the two-dimensional case. Nevertheless,
in this resolution, other input variables are fixed: the lateral
tension, the length of the cable, and the altitude difference.
By discretizing the cable, a matrix can be created in order
to solve the problem. Fig. 20 shows how a matrix is used to
apply the boundary conditions as well as the Newton’s second
law. Indeed, the latter is projected on the three axes. In this
matrix,

−→
R represents the tension within the cable and

−→
D the

drag. Moreover, Δ is used to compute the difference between
two consecutive elements. Equation (47) defines this matrix.

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 . . 0 0

0 0 0 . . 0

0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

(47)

Finally, the matrix problem can be written as shown on Fig. 20.
The n first lines represent the projection on the X-axis, the
n next lines the projection on the Y-axis and the n next
lines the projection on the Z-axis. Finally, the remaining rows
correspond to the boundary conditions. A stretched cable is
considered as initial condition and an iterative loop is created
based on the tension of the cable. Therefore, at each step,−→
R and

−→
D are computed. The loop is stopped once

−→
R has

converged on a final value. In order to visualize the result, a
nominal case is run and the results are presented on Fig. 21
and Fig. 22.

Fig. 20. Matrix representation of the 3D problem

Computing several cases, it is possible to highlight the fact
that a transformation which is composed of two rotations
(one around −→ux and the other one around −→uy) can be used
to transform the problem into a 2D problem. Therefore, an
analytical solution can also be found in the 3D case and the
problem seems to be entirely solved.

Fig. 21. 3-view of the shape of the cable

Fig. 22. 3D-visualization of the shape of the cable

Since an accurate analytical solution has been found for a
2D configuration, the goal is to find a plan that contains the
cable so that a 2D resolution can be performed analytically
and the 3D solution could be determined with rotations. Thus,
a first rotation is applied around −→ux and the corresponding
matrix is Rx and is defined by (48).

Rx =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0

√
1− z2

f

z2
f
+y2

f

zf√
z2
f
+y2

f

0 − zf√
z2
f
+y2

f

√
1− z2

f

z2
f
+y2

f

⎞
⎟⎟⎟⎟⎟⎠ (48)

Another rotation around −→uy using Ry defined by (49) is also
performed and the result is displayed in Fig. 23.

Ry =

⎛
⎜⎜⎜⎝

√
1− z2

m

z2
m+x2

m
0 zm√

z2
m+x2

m

0 1 0

− zm√
z2
m+x2

m

0
√

1− z2
m

z2
m+x2

m

⎞
⎟⎟⎟⎠ (49)

It can be concluded that, even if the cable is not perfectly
in the plane, the distance between the cable and the curve is

A. Problem Resolution

B. Possible Transformations
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lower than 10 cm which is negligible compared to the cable
length equal to several kilometers.

Fig. 23. Cable after a double rotation

X. CONCLUSION

The goal of this project was to study the characteristics
and the shape of the cable used to link the turbine and the
aircraft in the new “Jet-stream Airsail” concept. The latter
would be able to cross the Atlantic Ocean without consuming
fuel. The first step was to model the drag coefficient of the
cable. Since a circular cross-section creates an important drag,
it has been found more profitable to streamline the cable and its
optimal shape has been determined as well as its corresponding
aerodynamic characteristics. In order to compute the exact
drag along the cable, the jet-stream has been modeled as well
as the atmospheric properties such as the density. The second
step was the numerical computation of the shape of the cable
by discretizing it and applying the Newton’s second law and
the boundary conditions. The software Matlab was used and
has provided a useful framework to compute and display the
results. The analysis of the results shows physical limitations
which would be important to consider for the design and
the optimization of the concept. To check the accuracy of
the code, it has been compared to analytical solutions under
specific and simplified conditions. The third step was to find an
analytical solution of this problem. Since there were too many
parameters and dependence between each other, a sensitivity
analysis was performed and unessential factors was neglected
or simplified. Then, a complete analytical solution has been
derived and would highly accelerate the process and enable
trade-off studies during the design process. Even if it has been
simplified, the model is relatively precise since the relative
error is around 15% in the worst cases and around several
percents for typical values and nominal cases. Finally, a 3D
approach was proposed to solve more complex problems with
lateral forces. It has been shown that a combination of two
rotations would allow the use of analytical solutions, even with
lateral forces.

This study was performed in cruise and steady-state
conditions but it would be useful to study more complex flying

conditions such as gusts, climb and descent phases as well as
turn. Another problem remains the take-off and landing phases
and should also be considered in the next design steps.
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