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Abstract—Nanoscale thermites such as the composite mixture of 

nano-sized aluminum and molybdenum trioxide powders possess 
several technical advantages such as much higher reaction rate and 
shorter ignition delay, when compared to the conventional energetic 
formulations made of micron-sized metal and oxidizer particles. In this 
study, the self-propagation of combustion wave in compacted pellets 
of nanoscale thermite composites is modeled and computationally 
investigated by utilizing the activation energy reduction of aluminum 
particles due to nanoscale particle sizes. The present computational 
model predicts the speed of combustion wave propagation which is 
good agreement with the corresponding experiments of thermite 
reaction. Also, several characteristics of thermite reaction in nanoscale 
composites are discussed including the ignition delay and combustion 
wave structures. 
 

Keywords—Nanoparticles, Thermite reaction, Combustion wave, 
Numerical modeling.  

I. INTRODUCTION 
N the technical field of nanoenergetics, the use of highly 
reactive metallic powders produced in nanoscale particle 

sizes can dramatically increase the energetic performances in 
various military or civilian applications such as explosives, 
propellants, and pyrotechnic devices [1]. When compared to 
the conventional micron-sized metallic powders, nanoscale 
powders such as aluminum nanoparticles show much faster 
heat releasing reaction and more complete combustion along 
with much shorter ignition delay [2]-[4]. 

When the aluminum nanopowder is mixed with nanoscale 
metal oxidizer such as molybdenum trioxide (MoO3), it 
becomes a highly reactive thermite formulation. This nanoscale 
thermite reaction exhibits quite a rapid, highly exothermic 
combustion with high-energy release: 

 

2Al + MoO3 → Al2O3 + Mo + 4.7 kJ/g 
 
A nanoscale thermite mixture can provide an ability to 

release energy in a controllable fashion along with high energy 
density. Also, since the reaction gives benign by-products, the 
nanoscale thermite can be a viable candidate as replacement for 
conventional lead-based ammunition primers and pyrotechnic 
formulations [5], [6].  

In recent years, there have been many investigations on the 
combustion characteristics of nanoscale thermite formulation 
[7]-[9]. Among them, Granier and Pantoya [10] studied the 
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flame propagation in consolidated pellets made of the 
nanoscale Al/MoO3 thermite composites using nanosized 
aluminum powders of an average particle size ranging from 20 
to 200 nm mixed with nanoscale MoO3 flakes of approximately 
20 nm thickness. Nanoscale composite thermite pellets of 
cylindrical shape were produced by compacting nanoscale 
thermite powders with die compression loads and the thermite 
pellet samples were ignited using laser power. Their 
experimental measurements showed that the nanoscale thermite 
pellets have exceptionally high burn rates on the order of 10 
m/s. The ignition delay time was reduced by an order of 
magnitude compared to the conventional energetic materials 
with micron-sized Al/MoO3 particles. 

In this research, a simplified modeling analysis based upon 
self-propagating combustion waves has been established to 
predict and appreciate the ignition and combustion propagation 
characteristics in the consolidated Al/MoO3 nanoscale thermite 
composite pellets. 

II. COMPUTATIONAL MODELING 
In the present study on the analytic modeling of thermite 

reaction in Al/MoO3 nanoscale composite pellet, it is assumed 
that the reaction front propagates in a manner similar to that of 
homogeneous combustion waves, despite the heterogeneous 
nature of particle mixture. In this way, we assume that width of 
the reaction zone is much larger than the reactant particle size. 
Thus, the combustion wave propagation is not affected by the 
heterogeneous microstructure of the medium and thus moves 
uniformly. 

Figs. 1 and 2 illustrate the typical reaction characteristics of a 
self-propagating combustion wave in reactant-oxidizer system. 
The reactant fraction (η) or completion degree of reaction 
rapidly changes from one to zero across the reaction zone 
where the heat releasing reaction takes place. The temperature 
changes more slowly from combustion temperature (Tc) to the 
initial temperature (T0) of the unreacted medium. Heat 
diffusion occurs ahead of the combustion wave by creating the 
preheating zone. The energy equation for the one-dimensional 
thermite reaction and heat diffusion model [11] can be 
expressed as 

 

 Φ+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂

∂
fH

x
Tk

xt
cT ρρ )(   (1) 

 
where t is the time, T is the temperature, ρ is the mass density, c 
is the specific heat, k is the thermal conductivity of the 
consolidated composite pellet, while Hf is the exothermic heat 
of the chemical reaction. By assuming the Arrhenius chemical 
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of aluminum, as shown in Fig. 3. Note that the conventional 
modeling on the self-propagating combustion of micron-sized 
powders usually modifies the pre-exponential factor to include 
the particle size effects. 

 

 

 
Fig. 4 Temporal changes of reaction rate (a) and temperature (b) in 

nanoscale thermite reaction (Ea = 70 kJ/mol, qim = 200 MW/m2) 
 
In addition, although the measurements of activation energy 

were from the oxidation of aluminum powders with oxygen gas 
[12], we have used this data for the thermite reaction, since it is 
reasonably assumed that the decomposition of oxygen from the 
nano-sized oxidizer of MoO3 sublimation occurs on a time 
scale comparable to the experiments. 

Fig. 4 shows the temporal changes of reaction rate (Φ) and 
temperature in nanoscale thermite around the time of reaction 
initiation for the case where the aluminum activation energy is 
70 kJ/mol (or the corresponding particle size of 100 nm), while 
the imposed heat flux is 200 MW/m2. From the initial time of 
heat flux imposing (t=0), heat diffuses into the pellet and it 
takes some delay to start the thermite reaction when the time is 
approximately 0.43 ms. After the initiation of thermite reaction, 
the combustion wave front propagates steadily and its speed 
becomes constant at approximately 7.1 m/s. This predicted 
combustion wave speed is quite comparable with the measured 
value of 6.6 m/s [10]. Also, judging from the reaction rate in 
each time after the self-propagation of thermite reaction is the 
established, the reaction zone is estimated to be approximately 
10 µm in width. 

 

 
Fig. 5 Effects of activation energy on temporal changes of boundary 

temperature in nanoscale thermite reaction (qim = 200 MW/m2) 
 
At this time, three different activation energy levels of 48, 70, 

170 kJ/mol, which corresponds to the aluminum particle size of 
roughly 40, 100 nm, and 2-3 µm with the identical heat flux 
imposed (200 MW/m2), are tested in order to appreciate the 
effects of particle size reduction in thermite composite. Fig. 5 
shows the change of temperature at the wall where the heat flux 
is imposed. In the figure, the dotted line represents the wall 
temperature change without heat release from the reaction by 
assuming the heat diffusion into the semi-infinite solid and it is 
expressed as the relation of [13] 
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where α represents the thermal diffusivity of thermite pellet. 
Therefore, the departure of temperature from this semi-infinite 
solid approximation and subsequent temperature increase in a 
drastic manner exhibits the initiation of thermite reaction for 
each case of different level of activation energy or particle size. 
The ignition times for Ea = 48, 70, 170 kJ/mol are found to be 
0.14, 0.43, and 3.6 ms, respectively, showing that the ignition 
delay for micron-sized thermite is an order of magnitude larger 
than the ones for nanoscale thermite composites. Also, note that 
the ignition takes place at much lower temperature at nanoscale 
composites than the micron-sized pellets, and the nanoscale 
requires much less preheating before initiating the thermite 
reaction. 

The effects of reduction in activation energy by use of 
nanoparticles in thermite composites on the ignition delay and 
the speed of self-propagating combustion wave are summarized 
in Fig. 6. The increase of imposed heat flux results in faster 
ignition of the thermite pellet. In each case of activation energy, 
the ignition delay decreases to approximately one-tenth when 
the imposed heat flux increases from 100 to 400 MW/m2, as 
shown in Fig. 6 (a). In general, nanoscale thermites 
demonstrate the much faster ignition than the micron-sized 
ones, which may benefit the designing the initiation devices of 
propellants or explosives. The precise control of ignition delay 
in nanoscale thermite might be possible by adjusting the 
imposed heat flux (or laser power in the experiments). 
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Alternatively, the ignition delay could be changed by 
controlling the mixture ratio of reactant and oxidizer in thermite 
composites. 

In the experiments of nanoscale thermite ignition [10], the 
burn rate or combustion wave speed was measured for 
composite pellets made from thermite mixture with different 
particle sizes. Those experimental results are compared with 
the prediction of combustion wave speed from the present 
analytical modeling in this study. The agreement is quite 
favorable, as can be seen in Fig. 6 (b).  

For the case of activation energy of 48 kJ/mol (or aluminum 
particle size of 40 nm), the prediction shows the combustion 
wave speed of 11.7 m/s, while the measured speed is 11.2 m/s. 
For the activation energy of 48 kJ/mol (particle size of 
approximately 100 nm), predicted and measured speeds are 7.1 
and 6.6 m/s, respectively. In contrast, the micron-sized thermite 
samples (Ea = 170 kJ/mol for 2-3 µm aluminum particles in 
thermite composites), the combustion wave speed is found to 
be much slower at 1.1 (predicted) or 1.2 m/s (measured). 

IV. CONCLUSIONS 
As the nanoenergetics materials such as nanoscale thermites 

exhibit several technical advantages over the conventional 
micron-sized energetic formulations, this paper introduces the 
one-dimensional time-dependent computational model for the 
prediction of combustion wave propagation in compacted 
pellets made of nanoscale Al/MoO3 thermite with the inclusion 
of activation energy reduction in the oxidation of nano-sized 
aluminum powders. The reaction ignition of thermite pellets is 
simulated by imposing the heat flux and the computational 
results shows the self-propagation of thermite reaction front. 
When compared to the experimental results, the agreement of 
combustion wave speed depending on the level of activation 
energy or reactant particle size is found to be quite favorable. 

 

 

 
Fig. 6 Effects of activation energy on ignition time and combustion 

wave speed in nanoscale thermite reaction 
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