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Abstract—In communication systems, frequency jump is a 
serious problem caused by the oscillators used. Kalman filters are 

used to detect that jump, despite the tradeoff between the noise level 

and the speed of the detection. In this paper, an improvement is 

introduced in the Kalman filter, through a nonlinear change in the 

bandwidth of the filter. Simulation results show a considerable 

improvement in the filter speed with a very low noise level. 

Additionally, the effect on the response to false alarms is also 

presented and false alarm rate show improvement. 

 

Keywords—Kalman Filter, Innovation, False Detection. 

I. INTRODUCTION 

NE of the most widely used techniques in communication 

systems is the orthogonal frequency division 

multiplexing (OFDM) technique. Many standards have been 

implemented using OFDM, such as DVB-T, DVB-T2, Wi- Fi, 

WiMAX and LTE. One of the problems which OFDM suffers 

from is the frequency offset of the carrier, since the OFDM 

technique is very sensitive to any frequency offset. An 

additional problem is the sudden frequency jump in the 

frequency of the oscillator. It is necessary to detect this sudden 

frequency jump quickly and accurately. This sudden jump 

may be caused by humidity, temperature, or other mechanical 

problems due to aging. To measure the frequency of the 

oscillator, an analog sensor is assumed to be used, where the 

output of the sensor is a linear function of the frequency of the 

oscillator. This output is noisy and needs to be filtered to 

obtain the time and the value of the frequency jump. 

One of the commonly used techniques is the dynamic Allan 

variance (DAVAR), but it has a high computational cost as in 

[1]. This problem has been solved in [2]. Another problem is 

the uncertainty of the solution surface, which was discussed 

and solved in [3]. However, DAVAR still suffers the problem 

of non-causality, where it uses data after the jump to detect the 

jump. In addition, it still has a high computational cost 

compared to other techniques. Another technique used in [4] is 

based on the Generalized Likelihood Ratio Test (GLRT) 

which detects the presence of the frequency jump. 

Unfortunately, this is a probalistic technique which cannot 

detect the value of the jump accurately. Another technique is 

based on the Kalman filter algorithm [5], [6] where the sensor 
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and noiseless outputs are used as the observation and the state 

respectively. Accordingly, it has a low computational cost 

compared to the other techniques. It has the added advantage 

of causality. This technique requires a lot of time to detect the 

frequency jump if a low noise level is required. 

In this paper, an improvement in the Kalman filter is 

introduced, where a nonlinear change in the bandwidth of the 

filter will be done. This change is made by increasing the 

Kalman filter gain upon detecting a high innovation value. 

The innovation is the difference between the measured 

observation and the estimated one. If this innovation rises 

above its covariance by a certain threshold, then an action is 

taken. This change can be made in four different ways. The 

first is affected by introducing a large momentary step directly 

after the detection of the innovation. The second is to make a 

relatively small increase and hold that value until innovation 

decreases below the threshold and then remove this increase. 

The third is to increase the Kalman gain gradually until the 

innovation falls below the threshold. The last is to increase the 

Kalman gain to a relatively big value and then decrease it 

gradually until the innovation gets back below the threshold 

after that bring it to the normal value. This change in the 

Kalman filter gain can be obtained by increasing the 

covariance process noise which represents the frequency 

jump. The results will be carried using the four methods and it 

will be shown that they are faster than the ordinary Kalman 

filter. Also, the false alarm tracking will be better in some 

cases but not in all. The remainder of the paper is organized as 

follows: Section II introduces the problem formulation and the 

system modeling. Section II introduces the Kalman filter 

technique with the improvement done on it. Section IV 

provides some simulation results for the improvements done 

versus the algorithm in [5], and Section V is the conclusion. 

II. SYSTEM MODEL 

At the receiver the oscillator used for the carrier 

demodulation has a model which is 

 

���� � �� sin�2�����         (1) 
 

where �� is the amplitude of the oscillator and �� is the carrier 
frequency. The frequency and the amplitude of the oscillator 

signal will change due to some imperfections in the oscillator 

circuits due to humidity, temperature, and the age of oscillator. 

In this paper, the change in the amplitude is not considered, 

only the change in the frequency will be considered, only the 

change in the frequency will be considered. The change in the 
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frequency is considered a frequency jump, which is assumed 

to be a sudden jump. Accordingly, the frequency will be 

 

���� � ��  �����          (2) 
 

where, 

����� � ∆���� � ���         (3) 
 

where ∆� is the sudden change value and ���� is the unit step 
function, and �� is the time at which frequency jump occurs. 
From (1) and (2) 

 

���� � �� sin�2����  2��������      (4) 
 

The frequency of the output signal is measured by an analog 

sensor, which consists of some opamps and resistors which 

introduce flicker noise and additive white Gaussian noise 

(AWGN). The flicker noise can be neglected, since the circuit 

is operating in a high frequency range. In this paper, only 

AWGN with zero mean, which will be added to our measured 

frequency, is considered. Therefore the output of the sensor is 

 

����� � ����  �������  �����       (5) 
 

where ����� is the additive white Gaussian noise introduced 
from the analog sensor, and �� is the sensor constant.  
Defining, 

���� � ����� � ����        (6) 
 

Then 

���� � �������  �����        (7) 
 

Defining  

����� � �������         (8) 
 

Then 

����� � ∆���� � ���        (9) 
 

And (7) will be  

���� � �����  �����       (10) 
 

Therefore the output is the sudden jump in the frequency 

and the additive white Gaussian noise from the analog sensor. 

In order to measure this jump accurately and fast, we use a 

discrete time filter, with sampling time ��, then  
 

� � ���          (11) 
 

and (10) becomes 

������ � �������  �������     (12) 
 

By eliminating the sampling time notation from the 

equation we get 

 

���� � �����  �����       (13) 
 

where, 

����� � ∆���� � ���       (14) 

where 

�� � ����          (15) 
 

In the next section, the Kalman filter will be used with the 

improvement using this model stated in this section. The 

Kalman filter will be discussed in the Z-domain to obtain its 

bandwidth. The four improvements will be listed. Also, these 

improvements will be discussed in the time domain to show 

their effect on the Kalman filter equations and how they can 

be modeled. 

III. FREQUENCY JUMP DETECTION 

The authors in [5] had proposed a technique to detect the 

jump using the Kalman filter. Because it is a recursive filter, it 

has a low computational cost and low complexity. In addition, 

we have only one state, so it will be solved easily by the 

Kalman filter. The oscillator frequency jump is the filter state 

�����, and the discretized output of the analog sensor � ��� is 
the observation, so we can write the system model as 

 

����� � ����� � 1�  ����       (16) 
 

���� � ������  ����        (17) 
 

where, � is the state transition model, � is the observation 
model, � ��� is the process noise which represents the sudden 
jump, and � ��� which represents the additive white Gaussian 
noise added by the analog sensor. 

The Kalman filter algorithm can be written as follow; 
 

�����|� � 1� � ������ � 1|� � 1�      (18) 
 

where, ����� � 1|� � 1� is the updated (a posteriori) state 
estimate at time � �  1 using measurements up to the same 
time instant � �  1, and �����|� � 1� is the predicted (a priori) 
state estimate at time instant k using estimated states up to 

� � 1. 
 

!��|� � 1� � �"!�� � 1|� � 1�  #     (19) 
 

where !��|� � 1� is the predicted (a priori) estimate 
covariance of the state at time instant � using the previous 
time instants up to � �  1, and # is the covariance of the 
process noise. 
 

$��� � %�&|&'��(
()%�&|&'��*+        (20) 

 

where, , is the covariance of observation noise, and $��� is 
the optimal Kalman filter gain. 
 

�����|�� � �����|� � 1�  $���-���� � ������|� � 1�.  (21) 
 

where�����|��� is the updated (a posteriori) state estimate at 
time instant k using measurements up to k instant. And finally 
  

!��|�� � -1 � $����.!��|� � 1�      (22) 
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where, ! ��|�� is updated (a posteriori) estimate covariance of 
the sates at time instant �using measurements up to �instant. 
Using these equations we can investigate the bandwidth of the 

Kalman filter. Put � �  � �  1, then take the Z-transform and 
assuming $constant, we can find that 

 

/0��1� � /0��1�  $2/�1� � 1'�/0��3�4     (23) 
 

Then  
506�7�
5�7� � 8

�'��'8�79: � 87
7'��'8�       (24) 

 

 

Fig. 1 Kalman filter model in solving frequency jump problem 

 

So, Kalman filter is an IIR low pass filter where its 

bandwidth can be investigated as follows, put 
 

1 � ;<=>            (25) 
 

where �?is the cut off frequency of the Kalman filter, then 
 

8)

|�@AB�=>�'��'8�*< BCD�=>��|) � �
"       (26) 

 

Then 

�E � ?FG'� H"'"8'"8)

"��'8� I        (27) 
 

By evaluating (27), when K increase the bandwidth of the 

filter will decrease. 

We want to filter a signal, which is constant most of the 

time with some noise with autocorrelation R. In addition, at 

some times the signal has sudden jump which can be modeled 

as 
1
� in the continuous time domain. The improvement is to use 

the innovation and innovation covariance not only to detect 

the jump as in [6] but also to change the bandwidth of the 

Kalman filter. The bandwidth will be increased at this instant 

so the filter can respond to the jump faster then return it to the 

previous bandwidth. Using this non-linear change, the filter 

will keep the noise level small, and only the noise increase at 

the instant of the detection, but we will have the benefit of 

faster and accurate detection. So, to increase the bandwidth, 

the Kalman filter gain $ at the jump instant will be increased, 
from (20) put � �  1, since, ,is constant as it will be known 
from the analog sensor, then the only way is to increase the 

covariance process noise #at this instant. 

From (19) after putting � �  1, increasing #will increase 
predicted (a proiori) estimate covariance which will increase 

the optimal Kalman filter gain at this instant. 

By using the innovation referred to in [5], which is defined 

as, the difference between the measured observation and the 

estimated one. This innovation will be compared with the 

innovation variance. If the ratio increases a certain threshold 

Jthen a sudden frequency jump occurs. 
The innovation can be written as 

 

;��� � ���� � ������|� � 1�       (28) 
 

and the covariance of the innovation is 

 
KL"��� � �"!��|� � 1�  ,       (29) 

 

If ; ���  M  JK; ���, where l is a threshold ratio, this 
indicates that there’s a sudden frequency jump, then we must 

take a nonlinear action. 

In this paper, four different modifications to the Kalman 

filter gain, using the covariance of the process noise #are 
introduced. The four forms can be listed as follows: 

1) Upon detecting the innovation, make an increase in the 

covariance of the process noise #which will be nearly 
equal to the value of the innovation as in Fig. 2 (a). 

2) Upon detecting the innovation, increase the covariance of 

the process noise #to a certain value #� and check again 
if the innovation error is still over the threshold, the 

covariance of the process noise #will be still equal to #� 
until the innovation becomes below the threshold, then 

#will get back to its value as in Fig. 2 (b). 
3) Change the value of #gradually from low to high upon 

detecting an innovation until it comes back below the 

threshold then we return #to its initial value as in Fig. 2 
(c). 

4) Change the value of #from high to low upon detecting an 
innovation until it comes back below the threshold then 

we return #to its initial value as in Fig. 2 (d). 
 

 

Fig. 2 State diagram representation for the non-linear change in the 

Kalman filter bandwidth using the innovation, where (a) is the first 
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case, (b) is the second case, (c) is the third case, and (d) is the fourth 

case 

This nonlinear change can be expressed in time domain in 

the Kalman filter equations. Assuming first the optimal 

Kalman filter gain and covariance of the process noise are 

 

$ � $�           (30) 
# � #�           (31) 

 

where$0 and #0 are constant values. Also, other values 

$;,Pwill be defined as the error in the steady state Kalman gain 
due to non-zero settling time of the Kalman filter. 

So, the Kalman filter equations can be expressed in the four 

different cases as follows 

The first case, the Kalman filter gain is increased by setting 

#with a very large value nearly equal to the innovation for 
only one sample, then returning it to its default value #0 , so 
we can write the equation as: 

 

#��� � #�  #�Q�� � ���      (32) 
$��� � $�  $�Q�� � ���  ∑ $L,�Q�� � ���S'�

�T"   (33) 

 

where, �1 is the sample at which the sudden frequency jump 
happens, and the term $1 Q �� – �0 � �� ��1 � –  ��V��1  � 1�� 
represents the nonlinear term in the Kalman filter equation. 

The �;represents the non-zero settling time for the Kalman 
filter where it turns back at �W � 1 . 
In the second case, upon detecting a frequency jump, the 

value of the Kalman gain is changed by setting #to a certain 
value larger than #0, until the value of the innovation becomes 

lower than the threshold, then return #to its initial value #0 , 
so the equations can be expressed as 
 

#��� � #�  #� ∑ Q�� � ���X
�T�       (34) 

$��� � $�  $� ∑ Q�� � ���X
�T�  ∑ $L,�Q�� � ���S'�

�TX*�  (35) 

 

where, �0 is the sample at which the step happens, and �Yis 
the last sample where the innovation exceeds the threshold, 

and the term $1 H∑ HZ���P� � ��V��P � 1�[Q�� � �P�IY
P�1 I 

represents the nonlinear effect in Kalman filter. 

In the third case, upon detecting the frequency jump, the 

Kalman gain is increased by gradually increasing # by a 
constant step #G�;\ until the innovation becomes below the 

threshold then set #to its intial value before the step happens 
#0, the time domain equation can be written as 
 

#��� � #�  ∑ #�Q�� � ���X
�T�       (36) 

#� � #�'�  #�]L^        (37) 
$��� � $�  ∑ $�Q�� � ���X

�T�  ∑ $L,�Q�� � ���S'�
�TX*�  (38) 

 

where, �0 is the sample where the step happens, and �Yis the 
last sample where the innovation exceeds the threshold, and 

the term H∑ H$�Z���P� � ��V��P � 1�[Q�� � �P�IY
P�1 I, represents 

the nonlinear effect in Kalman filter, where �1 _ �2 _. . . _
�Y, where �Y�1  �  �Y –  1. 
The last case, upon detecting the step we set # with a 

relatively high value #a but not as in the first case and 
gradually decrease it until the innovation becomes below the 

threshold then set #to its initial value #0 , the equations are 
the same like the last case except 

 

#� � #b            (39) 
#� � #�'� � #�]L^          (40) 

 

�1 M �2 M . . . M �Y, where, �Y�1 � �Y � 1.  
In the next section, some simulation results will be listed to 

show the effectiveness of those improvements on the response 

to the jump and on the fault detection and tracking. 

 

 

Fig. 3 Response of the Kalman filter in the ordinary case when no 

nonlinear change happens and the other cases stated in this paper, 

which shows a highly improvement in the transient time of the 

detection 

IV. RESULTS 

In the simulations, the problem was modeled as follows, the 

sensor output has been sampled by a sampling time �G  �
 1G;?. The oscillator used has a frequency jump at � �  ��  �
 101, and the value of the jump measured by the sensor is 10 
(relative units according to the sensor). The sensor adds 

AWGN with zero mean and unity variance (relative units 

according to the sensor), so the observation noise covariance 

will be equal to , �  1. 
For the Kalman filter # �  #�  �  0.0001 has been used 

when there’s no frequency jump. When a frequency jump is 

detected, in the first case, put #1 � 10, which is nearly the 
innovation value assumed to be known.In the second case, put 

#1 � 0.01, and wait until the innovation gets below the 
threshold again. In the third case a step #G�;\ � 0.01 has been 
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used. And finally at the fourthcase, first put #a �  3, and use 
step #G�;\ � 0.01. 
In Fig. 3, the sampled output of the sensor before using the 

Kalman filter ����, the output of the ordinary Kalman filter, 
and the output of the Kalman filter in each of the four cases 

mentioned in Section III have been plotted.  

 In this figure a high threshold J �  5 has been used in 
order to focus on the transient time only. In Fig. 3, all the 

cases have the same output when no jump has been detected as 

they all use the same �  #� . Also, the ordinary Kalman filter 
has the worst transient time which can be defined at 95% from 
the final value (i.e. error=5%), and the first case has the best 
transient time. 

The second case is the worst one among the four cases but it 

is better than the ordinary Kalman filter. Also the third and the 

fourth cases are very close to each other. The transient time in 

each case is listed in Table I. where the time instants are in 

second. In Figs. 3 and 5, the threshold has been changed to 

J �  2. 
 Fig. 4 shows the main problem associated with the first 

case when a false alarm happens. The filter in this case will 

respond very fast to this fault and detects it leading to a high 

probability of false detection. This problem is not severe in the 

other cases as shown in Fig. 5, as the filter in those cases has a 

slow response to those false alarms, which leads to a low 

probability of false detection. In both figures the response to 

this false alarms are marked. 

 

 

Fig. 4 The false alarms from using the first case which is marked by 

the ellipsoid shape 

V. CONCLUSION 

In this paper, the frequency jump problem in the oscillator 

has been considered. Four different ways have been 

introduced to improve the performance of the Kalman filter in 

detecting the sudden frequency jumps quickly and accurately. 

These ways are based on increasing bandwidth of the Kalman 

filter at the jump instant by increasing the Kalman filter gain 

using the covariance of the process noise. Some simulation 

results have shown a considerable improvement happened in 

the output of the Kalman filter. It was founded that case I 

described in the paper show the best frequency jump tracking, 

however, it suffers from a false alarm problem. While cases III 

and IV alleviate the false alarm problem and show tracking 

properties that is considerably faster than the ordinary Kalman 

filter.  
 

TABLE I 

TRANSIENT TIME OF THE ORDINARY KALMAN FILTER AND THE OTHER FOUR 
WAYS, WHERE WE CAN CONSIDER THIS TIME WHEN THE OUTPUT IS 5% 
FROM THE FINAL RESULT, AND THE TIME INSTANTS ARE IN SECOND 

Type Transient time 

Ordinary Kalman 400 

First Case 120 

Second Case 170 

Third Case 150 

Fourth Case 148 

 

 

Fig. 5 The response of the other case to the false alarms, the response 

has been marked by a circle 
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