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Abstract—This paper deals with the assessment of faulted area 

around an industrial customer connected to a particular electric grid 
that will cause a certain sag magnitude on this customer. The faulted 
(critical or exposed) area’s length is calculated by adding all line 
lengths in the neighborhood of the critical node (customer). The 
applied method is the so-called Method of Critical Distances. By 
using advanced short-circuit analysis, the Critical Area can be 
accurately calculated for radial and meshed power networks due to all 
symmetrical and asymmetrical faults. For the demonstration of the 
effectiveness of the proposed methodology, a study case is used. 
 
Keywords—Critical area, fault-induced voltage sags, industrial 

customers, power quality. 

I. INTRODUCTION 
OLTAGE sags are sudden drops in the rms voltage and 
are usually characterized by the remaining (retained) 

voltage. The most severe sags are caused by short-circuits in 
the transmission or distribution system. Their effect on 
sensitive equipment, such as computers, adjustable speed 
drives or control devices can be as important as voltage 
interruptions, which are more severe but less frequent. 
Industrial customers that use widely the aforementioned type 
of equipment may face enormous financial losses due to the 
frequency of sags and sensitivity of equipment [1], [2].  

Several mitigation methods for the consequences of sags 
have been proposed [1], [2], [10]. The first step for the 
selection of the appropriate mitigation method is the 
assessment of the expected number of sags per year. Three 
methods have been proposed for the assessment of voltage 
sags due to faults: the method of Critical Distances [1]-[3], the 
method of Fault Positions [4] and the Monte Carlo method [5], 
[6]. All methods combine the response of the system to faults 
with stochastic data.  

Apart from the assessment of the expected number of sags 
per year, the assessment of Critical Area around a sensitive 
industrial customer is also of high significance. This area can 
be an index of the sensitivity of a particular industrial 
customer but also reveals the location of faults. Thus, the 
examined area to apply methods for the elimination of short-
circuits (faults) can be limited to a smaller area.  

All the three aforementioned methods can be used for the 
calculation of the Critical Area. In this paper, the Method of 
Critical Distances is developed and thoroughly analyzed. The 
pros and cons of the particular method compared with the 
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other two methods for the estimation of Critical Area are fully 
examined. The main points for a proper application of the 
examined method are listed along with suggestions for the 
elimination of calculation effort. For the demonstration of its 
effectiveness and the advantages against the method of Fault 
Positions, a generic meshed power network is used.  

II. ADVANCED SHORT-CIRCUIT ANALYSIS 
Voltage sag magnitude, which is the minimum retained (or 

during-fault) voltage among the three phases, can be 
calculated using analytical expressions derived from short-
circuit theory [7] or performing detailed simulations [5], [6]. 
In [2], [3] simplified expressions based on the voltage divider 
model have been proposed for fast assessment of the critical 
distances and the number of sags. This approach is suitable for 
radial networks but presents many limitations for meshed 
systems [11], [12].  

For the optimal assessment of voltage sag magnitude, it is 
important to use analytical expressions for the sag magnitude 
due to symmetrical and asymmetrical faults that are applicable 
to meshed and radial power networks. The methodology and 
the analytical expressions for the sag magnitude of the 
observation (sagged) node in relation with the fault distance 
due to faults at every point of a power line are given in [8]. 

A. Faults and Observation node at the Same Voltage Level 
When a fault occurs at the same voltage level with the 

observation node (i.e. the examined industrial customer), the 
faulty phases coincide with the most sagged phases. For three-
phase (3ph) faults and single-phase-to-ground faults (1ph) on 
phase A, the during-fault voltage of phase A gives the sag 
magnitude. For two-phase (2ph) and two-phase-to-ground 
(2ph-g) faults e.g. between phases B and C, sag magnitude is 
the minimum retained voltage among the sagged phases. 
Specifically, when ohmic resistances of lines are not 
neglected, sag magnitude of phases B and C are not always 
equal, even for common assumptions used in fault analysis 
[8], [9], i.e.: 
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In Table I, all the symbols, quantities and properties used in 

the current short-circuit analysis are presented.  

B. Faults and Observation Node at Different Voltage Levels 
When a fault occurs at different voltage level from the 

observation node due to the presence of a power transformer, 
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the effect of transformer’s winding connectivity and phase 
shift should be introduced to the analytical expressions. The 
effect of the winding’s connectivity is well known how to be 
handled in the formulation of Zbus. The effect of power 
transformer’s phase shift in case that an unbalanced fault 
occurs at the other side of the transformer with relation to the 
observation node is explained in [8], [9]. E.g. for a Dyn1 
power transformer, in order to incorporate into the analytical 
expressions the phase shift introduced when faults occur at the 
High Voltage (HV) side and observed by the Low Voltage 
(LV) side, a phase shift of +600 (or 2a− ) in the negative-
sequence voltage can be applied.  

Consequently, except for 3ph faults, new expressions are 
derived for the sag magnitude observed at the LV side due to 
unbalanced faults at the HV side. Those expressions for 
unbalanced faults are given in [8]. The accuracy of the derived 
expressions which incorporate the transformer’s effect can be 
easily verified using a simulation software e.g. PSCAD [13]. 

 
TABLE I 

NOMENCLATURE 
Symbol Quantity 

(0)(2),(1),  Superscripts defining positive, negative and zero 
sequence respectively 

A, B, C Superscripts defining phases A, B and C 
pref

f
pref

k VV ~,~
 Pre-fault voltage (phase A) of nodes k, f 

Α
kfV~ ,

B
kfV~ ,

C
kfV~  

Phase A, B, C voltages at node k during a fault at 
position f 

α Fortescue operator (
3/2πj

ea = ) 
Zflt Fault impedance 

Zbus Bus impedance matrix 

Zff Driving-point impedance of bus f 

Zkf Transfer impedance of buses k and f 

z Physical impedance of a branch 

ℓ ( 10 ≤≤ ) Distance to the fault and critical length 

III. ASSESSMENT OF CRITICAL AREA 
For the assessment of Critical area, the methods of Critical 

Distances, Fault Positions and Monte Carlo have been 
proposed. The first method can be applied only using 
analytical methods for the calculation of voltage sag 
magnitude. The other two methods can be applied by using 
either analytical methods or simulations e.g. using 
PSCAD/EMTDC software package [13].  

In the method of Fault Positions, the sag magnitude is 
calculated for various fault positions (lengths) spread at equal 
distances for each line. To obtain a good accuracy on the 
results, a large number of fault positions for each fault type 
must be used. The usual procedure to find the minimum 
number of fault positions is to increase the number of fault 
positions until the results remain unaltered.  

The Monte Carlo technique is widely used for solving 
stochastic problems. It is based on an iterative procedure that 
uses in every step a new set of values of the random variables 
involved in the process. These values are generated according 

to the probability density function associated to each variable. 
The response of the system studied converges to a solution 
theoretically after an infinite number of iterations. 

IV. METHOD OF CRITICAL DISTANCES 
The method of Critical Distances is based on the 

determination of the critical (exposed) area around the 
sensitive customer (observation node) for a given critical 
voltage sag magnitude Vcrit, which takes values within the 
range 0.1-0.9 pu [14], [15].

 
Adding the line lengths within the 

exposed area the length of Critical Area is determined [1]-[3]. 
More specifically, it involves the solution of the following 
expression for each line in the neighborhood of the examined 
critical node in order to find the critical length per line for 
which the voltage will become lower than the examined 
critical voltage: 
 

critV     |)(kfV| ≤~                                     (2) 

 

where )(~
kfV  is the minimum voltage among the three phases, 

k the observation node of a sag due to a fault at position f. The 
expressions for )(~

kfV are given in [8].  

V. STUDY CASE 
The assessment of Critical Area is mainly important for 

industrial customers and is usually performed in distribution 
networks. A suitable power network for the application of the 
Method of Critical Distances method is as the one shown in 
Fig. 1. Six industrial customers are connected at six nodes of 
the same 20 kV distribution line through a solidly grounded 
Dyn1 transformer, widely used in Greece. The equivalent 
transmission system consists of three 150 kV lines and is 
relatively of large size to take into account the fact that faults 
even at hundred kilometers away from the critical customers 
will cause them severe sags [1].  

 

 
Fig. 1 Single-line diagram of the studied power network 

 
The method of Critical Distances will be applied for the 

assessment of Critical Area of node 1. The sag magnitude for 
each fault type is given by the minimum retained voltage 
among the three phases. By graphical analysis [9], it can be 
shown that the sag magnitude for 2ph and 2ph-g faults at MV 
side is given by the during-fault voltage of phase C. Using the 
common assumptions given in (1), the analytical expressions 
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for the calculation of sag magnitude for 3ph, 1ph, 2ph and 
2ph-g faults at MV side, are given from the following 
expressions (respectively): 
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For faults at HV side and calculation Critical Area of node 

1, the transformer’s phase shift effect must be incorporated 
into the analytical expressions of during-fault voltages. The 
minimum retained voltage can be used for the extraction of the 
sag magnitude. By an extensive examination of those 
expressions it can be proved that, in case of a Dyn1 HV/MV 
transformer, the sag magnitude of node 1 is equal for 3ph, 2ph 
and 2ph-g faults [9]. For 1ph faults, the minimum among 
phase voltages A and B of node 1 will give the sag magnitude 
[9]. Thus, the following expressions for 1ph faults and (3) can 
be used for the calculation of sag magnitude for each fault 
type at HV side:  
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Combining (2) with (3)-(8) will give the critical length of 

each power line in which a fault will give a sag magnitude 
below the critical voltage critV . For 3ph, 1ph and 2ph faults, 

(2) is further processed and the final expression to be solved is 
extracted as follows:  
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In case of 2ph-g faults, the final expression for the 

calculation of the critical length is extracted as follows: 
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The coefficients n, d are complex numbers and the 

coefficients s are real numbers. The coefficients n, d and s are 
given in the Appendix.  

The Critical Area (CA) in km for faults at MV and HV side 
for each node, fault type and critical voltage can be expressed 
as follows: 
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where m, h are the total number of power lines inside the 
critical area, L the length of each line and ji ,  the pu critical 

lengths per line given by (9) and (10).  

A. Depiction of Critical Areas on the Electric Grid 
The Critical Areas for all fault types and three critical 

voltages are graphically presented in Fig. 2 on the electric 
grid. It should be noted that in cases where two phases are 
sagged, two different critical lengths are found and the 
maximum among them is kept. In case of faults on HV side, 
the sag magnitude on the MV side is the same for 3ph, 2ph 
and 2ph-g faults. Thus, the critical lengths are equal for lines 
7-8, 8-9, 7-9 and observation node 1-6 for any critical voltage.  
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Fig. 2 Critical areas of node 1 for a critical voltage of 0.5 pu, 0.7 pu 

and 0.9 pu. (a) 1ph, (b) 3ph, (c) 2ph, (d) 2ph-g faults 
 
Moreover, there may be one or two acceptable solutions for 

analytical expressions (9), (10) and the part of the line that 
these critical lengths correspond to should be determined. In 
case of 1ph faults, for critical voltage equal to 0.9 pu there are 
two acceptable solutions on line 7-8 with a total length of 
0.204 pu or 102 km. There are also two solutions on line 8-9 
for the same critical voltage that give a total critical length of 
0.088 pu or 17.6 km. Those findings by solving (9) are 
graphically depicted on Fig. 2 (a).  

In Figs. 2 (b)-(d) the Critical Areas on HV and MV side is 
graphically presented for 3ph, 2ph and 2ph-g faults for three 
different critical voltages (0.3, 0.7, 0.9 pu). The Critical Areas 
on HV side for every critical voltage is exactly the same for 
the three fault types. In case of line 8-9 and a 0.9 pu critical 
voltage, there are two acceptable solutions that give a total 
critical length of 0.619 pu or 123.8 km. 

B. Total Length of Critical Areas per Fault Type and Vcrit 
In Fig. 3, the Critical Area of Nodes 1 and 4 is presented for 

every fault type on MV side vs. critical voltage. These nodes 
have the best and worst performance respectively after a fault 
on the MV side. It can be observed that the maximum critical 
length equals to 40 km for a sag magnitude below 0.9 pu for 
any fault type except for 1ph faults and Node 1. This means 
that any fault within the 40 km length of the MV grid will 
cause a sag magnitude below 0.9 pu. Moreover, for a sag 
magnitude equal to or below 0.8 pu, 2ph faults give larger 
critical length than 3ph faults because of the behavior of Node 
in faults on the lateral feeders. In case of Node 4, the 1ph 
faults dominate on deep voltage sags even compared to 3ph 
faults. Furthermore, 2ph faults contribute to critical areas for 
sag magnitudes equal to or over 0.5 pu. 

In Fig. 4, the Critical Area of Nodes 1 to 6 is presented for 
faults on HV side vs. critical voltage. It can be observed that 
the length of critical area for 1ph faults is much shorter than 
for the other fault types. It should also be noted that 1 ph faults 
cause 2ph sags and 2ph faults 1ph sags on MV side.  

In Fig. 5, the Critical Area of Nodes 1 and 4 is presented for 
faults on MV and HV side vs. critical voltage. The Critical 
Area that corresponds to 1ph faults has a much shorter length 
than the Critical Areas of the other fault types, which are 
almost equal. The effect on Critical Areas for 1ph faults is due 
to the power transformer’s phase shift, which mitigates their 
severity despite the fact that they are the most frequent ones. 

 

 

 
Fig. 3 Total length of Critical Area for faults on MV side vs. critical 

voltage (sag magnitude) for Nodes 1 and 4 
 

 
Fig. 4 Total length of Critical Area for faults on HV side vs. critical 

voltage (sag magnitude) for Nodes 1 to 6 
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Fig. 5 Total length of Critical Area for faults on HV and MV side vs. 

critical voltage (sag magnitude) for Nodes 1 and 4 

VI. CONCLUSION 
In this paper, the method of Critical Distances is used to a 

test power system in order to assess the Critical Area in which 
a fault will give a certain sag magnitude on a node where an 
industrial customer may be connected. This method gives high 
accuracy on the results. The main drawbacks of this method in 
relation with the Methods of Fault Positions and Monte Carlo 
include the high calculation effort and the selection of the 
appropriate root or roots obtained by solving the inversed 
expression. However, with a proper short-circuit analysis and 
the analytical expressions given in the current paper the 
calculation effort can be significantly reduced.  

APPENDIX 

A. Coefficients n and d 
The coefficients n and d for all faults at position f of a 

power line p-q (Fig. 6), are given below:  
 

 
Fig. 6 Fault position f on line p-q 
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For 1ph faults: 
 

(0)
pq

z
(1)
pq

z
(0)
pq

Z
(1)
pq

Z4
(0)
qq

Z
(0)
pp

Z
(1)
qq

Z
(1)
pp

Z −⋅−⋅−⋅−++⋅+⋅= 22222d
 

 )
*(2)

pk
Z

(1)
pk

Z
(0)
pk

(Z ++−= 2d
A
2

n

 )
*(2)

pk
Za

(1)
pk

Z
2

a
(0)
pk

(Z ⋅+⋅+−⋅= 2d
B
2

n
2

a
 

(0)
pq

z
(1)
pq

z
(0)
pp

Z
(1)
pp

Z4
(0)
pq

Z
(1)
pq

Z4 +⋅+⋅−⋅−⋅+⋅= 2221d

)
*(2)

qk
Z

(1)
qk

Z
(0)
qk

(Z)
*(2)

pk
Z

(1)
pk

Z
(0)
pk

(Z ++−+++= 1d
A
1

n

)
*(2)

qk
Za

(1)
qk

Z
2

a
(0)
qk

(Z)
*(2)

pk
Za

(1)
pk

Z
2

a
(0)
pk

(Z ⋅+⋅+−⋅+⋅++⋅= 1d
B
1

n
2

a

(0)
pp

Z
(1)
pp

Z +⋅= 20d
 

)
*(2)

pk
Z

(1)
pk

Z
(0)
pk

(Z ++−= 0d
A
0

n

)
*(2)

pk
Z

(1)
pk

Z
(0)
pk

(Z ⋅+⋅+−⋅= aaa
22

0d
B
0

n
 

 
For 2ph faults: 
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For 2ph –g faults: 
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where (*) means that those properties should be multiplied by 
(-α2) for faults at HV side and sag is observed at MV side 

B. Coefficients s 
The coefficients s of are real numbers and for 3ph, 1ph and 

2ph faults given below:  
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For 2ph-g faults: 
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where Re{} and Im{} are the real and imaginary part of 
coefficients n and d . 
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