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Abstract—In this paper, a sliding mode control method based on 

the passivity approach is proposed to control the position of 
surface-mounted permanent magnet synchronous motors (PMSMs). 
Firstly, the dynamics of a PMSM was proved to be strictly passive. 
The position controller with an adaptive law was used to estimate the 
load torque to eliminate the chattering effects associated with the 
conventional sliding mode controller. The stability analysis of the 
overall position control system was carried out by adopting the 
passivity theorem instead of Lyapunov-type arguments. Finally, 
experimental results were provided to show that the good position 
tracking can be obtained, and exhibit robustness in the variations of the 
motor parameters and load torque disturbances. 
 

Keywords—Adaptive law, passivity theorem, permanent magnet 
synchronous motor, sliding mode control.  

I. INTRODUCTION 
ERMANENT magnet synchronous motors have low inertia, 
high efficiency, high power density, and fast response 

properties, which are widely applied to industrial applications 
[1]. Employing the field-oriented control technique [2], the 
dynamical model of a PMSM is rather similar to that of a DC 
motor, and the control effort is reduced. However, the control 
performance is still affected by the load torque disturbance or 
parameter uncertainty. 

The passivity theorem is an alternative scheme for the 
stability analysis of feedback systems [3]. Recently, some 
sliding mode control approaches for induction machines or 
PMSMs are presented to show the feasibility by means of 
simulation or experimental results [4]-[6]. The sliding mode 
control is one of the effective methods to overcome the 
variations of system parameters and external disturbances [7]. 
However, the main drawback of this kind of discontinuous 
switching control law is the undesirable chattering effects. 
Some research results have been proposed to remove or 
alleviate the chattering [8], [9]. The values of the moment of 
inertia and the viscous friction coefficient of PMSMs are 
generally small. Thus, the load torque disturbance is a critical 
term to yield the chattering of the control input. In this paper, 
we utilized the passivity theorem to design an adaptive load 
torque estimator to eliminate the undesirable chattering. The 
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position control system is formally verified to be 
asymptotically stable. Experimental results show the 
effectiveness and the capability for position tracking of the 
presented scheme. Moreover, the estimated parameters are 
bounded and converge to the actual values.  

II. MATHEMATIC MODEL AND PASSIVITY FOR PERMANENT 
MAGNET SYNCHRONOUS MOTORS 

The dynamic equations of a PMSM in the rotor reference 
frame can be described as follows [10]: 

 

 ( )1
ds ds s ds p m qs qs

ds
i V R i n L i

L
ω= − +  (1) 

 

 ( )1
qs qs s qs p m ds ds p m f

qs
i V R i n L i n

L
ω ω λ= − − −  (2) 

 

 ( )( )1 3
2m p f ds qs ds qs L mn L L i i T B

J
ω λ ω⎛ ⎞= + − − −⎜ ⎟

⎝ ⎠
 (3) 

 
 m mθ ω=  (4) 
 
where 
 ds ds ds fL iλ λ= +  (5) 
 
 qs qs qsL iλ =  (6) 

 
with dsi  and qsi  are the d- and q-axes stator currents; dsV  and 

qsV  represent the d- and q-axes stator voltages; dsL  and qsL  

denote the d- and q-axes stator inductances; dsλ  and qsλ  are 

the d- and q-axes stator flux linkages; fλ , sR , pn , mω , and 

mθ  represent the rotor permanent magnet flux linkage, stator 
resistance, number of pole pairs, mechanical rotor angular 
speed, and mechanical rotor position, respectively; J , B , and 

LT  denote the moment of inertia, viscous friction coefficient, 
and load torque, respectively. 

In order to prove the property of passivity of a PMSM, the 
storage function ( )V t  is defined as 

 

 ( ) ( ) ( )( )2 21
2 ds ds qs qsV t L i t L i t= +  (7) 
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The derivative of ( )V t  along the trajectories of (1) and (2) is 
given by 

 

 
( ) ( )

( )

2 2
ds ds qs qs s ds qs

p m ds qs qs ds p m f qs

V t V i V i R i i

n i i L L n iω ω λ

= + − +

+ − −
 (8) 

 
For a surface-mounted PMSM, the d- and q-axes stator 

inductances are the same. If dsV , qsV  are considered inputs, 

and dsi , qsi  are outputs, and then integrating both sides of (8) 

and using (6) yields 
 

 
( ) ( ) ( )

( )( )
0

2 2

0

0

/

t
ds ds qs qs

t
s ds qs p m f qs qs

V i V i d V t V

R i i n L d

τ

ω λ λ τ

+ = −

+ + +

∫

∫
 (9) 

 
which implies that the PMSM is a state strictly passive system. 
Then, the origin of (1) and (2) is an asymptotically stable 
equilibrium point of the unforced system dsV = qsV =0 [11]. 

The vector control of a PMSM is to force dsi to zero, 
therefore, (3) can be rewritten as 

 
 m m L tJ B T k uθ θ+ + =  (10) 

 
where 3 /2t p fk n λ=  is the torque constant, *

qsu i=  is the 

control input. Thus, the dynamics of the PMSM is simplified to 
that of the DC motor and the control effort will be reduced. 

III. SLIDING MODE POSITION CONTROLLER 
Generally, motors are adopted as the speed (or positioning) 

actuator to drive various mechanical loads, such as robotics, 
elevator, machine tools, etc. These typical load torques are 
proportional to sin( )mθ , mω , 2

mω , and can be described by the 
torque-speed characteristic curve, so we suppose that the load 
torque is a function of the mechanical rotor position for the 
experimental position control system, and can be described as:  

 
 sin ( )L L mT K θ=  (11) 

 
where LK  is an unknown constant. That is, the load torque is 
characterized by the known type function with unknown 
magnitude. Applying (10) and (11), the dynamics of a PMSM 
can be rewritten as 

 
 ( )sink m k m k mJ B K uθ θ θ+ + =  (12) 

 
where k tJ J k= , k tB B k=  and k L tK K k= . 

The sliding surface is chosen to be 
 

 1 1, 0S e c e cθ θ= + >  (13) 

where eθ  represents the position tracking error, and it is 
defined as 

 
 *= m meθ θ θ−  (14) 

 
where *

mθ  represents the position command. Differentiating 
(13) and utilizing (11) and (12), we obtain 

 
 ( )sink k k k k mJ S B S u J z B z K θ+ = − − −  (15) 

 
where 1mz c eθθ ∗= − . The mechanical parameters of a PMSM 
are not exactly known, therefore kJ  and kB  can be expressed 
as: 

 
 k kn kJ J J= + Δ  (16) 
 
 k kn kB B B= + Δ  (17) 

 
where knJ  and knB  are nominal values of kJ  and kB , 
respectively. kJΔ  and kBΔ  are the deviations.  

In order to reduce the chattering phenomenon, the control 
input with an adaptive law is chosen as 

 

 
( )

( ) 2

ˆ sin sup sgn( )

 sup sgn       
kn kn k m k

k

u J z B z K J Sz z

B Sz z c S

θ= + + − Δ

− Δ −
 (18) 

 
where ˆ

kK  represents the estimated value of kK . sup ⋅ , 
sgn( )⋅ , and c2 are the least upper bound, signum function, and 
positive constant, respectively. Substituting (18) into (15) gives 

 
 2( )k kJ S B c S u+ + =  (19) 

 
where 

 
( )sin sup sgn( )

sup sgn( )
k m k k k

k

u K J z B z J Sz z

B Sz z

θ= − Δ − Δ − Δ

− Δ
 (20) 

 
with ˆ

k k kK K K= − . The following adaptive law is adopted to 
estimate the unknown external load torque disturbances,  

 

 3 3
ˆ sin( ) , 0k mK c S cθ= − >  (21) 

 
where c3 denotes the adaptive gain. Hence, the closed-loop 
equivalent feedback interconnection for the position control of 
a PMSM is shown in Fig. 1. 
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Fig. 1 Equivalent feedback interconnection of a PMSM 

 
In order to carry out the stability analysis via passivity 

theorem, we employ the verification and lemma [12] and need 
to prove the passivity property of each block in Fig. 1 before 
analyzing the stability. Utilizing (19) yields 

 

 ( )2 2 2
3

0 0

1, ( ) (0) ( )
2

t tT
k k ktS u S ud J S t J S B c S dτ τ= = − + +∫ ∫ (22) 

 
Thus, according to the definition [13], the mapping Su~  

of the feedforward block in Fig. 1 is output strictly passive for 
all 0t ≥ . We now consider the passivity property of lower 
block in Fig. 1. Using (20) and (21) gives 

 

 

( )
( )

( )

2 2

0 3

0

1, ( ) (0)
2
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              sup sgn( )

t T
k kt

t k k

k k
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τ

τ
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∫

∫
(23) 

 
Therefore, according to the definition [13], the mapping 

uS ~−  is input strictly passive for all 0t ≥ . 
Combining (18) and (19), we get 

 

 
2

2

3

( )( ) k
k

K tJ S t
c

+  < 
2

2

3

(0)
(0) k

k
K

J S
c

+  (24) 

 
Equation (24) verifies that the sliding mode position control 

system is asymptotically stable. Fig. 2 shows the schematic 
diagram of the system. 
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Fig. 2 Schematic diagram of the position control system 

IV. EXPERIMENTAL RESULTS 
Fig. 3 shows the experimental hardware set-up which 

consists of a PC, an interface card with 12-bit analog-to-digital 
and digital-to-analog converters, a ramp comparison 
current-regulated voltage source inverter with an intelligent 
power module for the power switching device, and a 750-watt 
surface-mounted PMSM with a 2000 pulses/rev encoder. The 
resolution of the encoder is improved by the four times 
frequency multiplier. A counterweight is affixed to the rotor 
shaft for simulating the mechanical parameter variations and 
load torque disturbances. The control algorithm is built by 
adopting the MATLAB/Simulink blocks, and the sampling 
time is 0.5 ms. 

In order to ensure the convergence of kK~  to zero, a square 
waveform is adopted to evaluate the position tracking 
capability. Hence, the position command *

mθ  continuously 
changed from 630° to 450° per three seconds. Fig. 4 shows the 
position responses and the parameter estimation result when 
load torque sin( ) NmL mT θ=  is applied to the rotor shaft. As 
seen in Fig. 4 (b), the position tracking error varies from 1.035° 
to －1.08° when the steel arm is approximately horizontal to 

the ground. From Fig. 4 (e), ˆ
kK  fluctuates between 1.6 and 1.7 

due to the torque constant 0.61tk = . This means that 
ˆ ˆ

L t kK k K=  varies from 0.976 to 1.037. Thus, the relative error 

is 3.7％ for the parameter ˆ
LK  in estimating a load torque. 

Experimental results show that the percentage of estimation 
error is acceptable. That is, the proposed scheme is robust to the 
variations of the motor parameters and external load torques. 

 

 
Fig. 3 Experimental set-up 
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Fig. 4 Measured position responses and the estimated parameters: (a) 
position, mθ ; (b) position tracking error, eθ ; (c) control input, u; (d) 

phase-A current, asi ; (e) estimated parameter, ˆ
kK  

V. CONCLUSIONS 
A passivity-based sliding mode position control algorithm 

with an adaptive load torque estimator is designed to control the 
position of a PMSM such that the chattering effects associated 
with the conventional sliding mode position controller can be 
alleviated. The passivity properties of the PMSM and the 
overall position control system stability have been proved 
formally based on the passivity theory. An experimental setup 
of a PC-based drive system is utilized for demonstrating the 
characteristics of the proposed scheme. Good position tracking 
responses can be obtained by the proposed sliding mode 
position controller. Furthermore, the approach is robust to the 
variations of motor parameters and load torque disturbances. 
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