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Abstract—Seismic design criteria based on performance of 

structures have recently been adopted by practicing engineers in 

response to destructive earthquakes. A simple but efficient 

structural-analysis tool capable of predicting both the strength and 

ductility is needed to analyze reinforced concrete (RC) structures 

under such event. A three-dimensional lattice model is developed in 

this study to analyze torsions in high-strength RC members. 

Optimization techniques for determining optimal variables in each 

lattice model are introduced. Pure torsion tests of RC members are 

performed to validate the proposed model. Correlation studies 

between the numerical and experimental results confirm that the 

proposed model is well capable of representing salient features of the 

experimental results. 

 

Keywords—Torsion, non-linear analysis, three-dimensional 

lattice, high-strength concrete. 

I. INTRODUCTION 

structural design, besides concern of safety in general, is 

also typically based on cost. Small cross-sectional areas 

and large spans are usually targeted to achieve optimal spaces. 

Typical design of a structure subjected to an earthquake- 

induced load is based on an assumption that the seismic load is 

applied on the structure only along its main direction. Seismic 

loads, however, could act on a structure at any skew angle; 

resulting in unexpected torsional loads. Thus, structures under 

skew earthquake loads are simultaneously subjected to 

bending, shear, and torsion loads. Since seismic, and also wind 

loads, act in random directions, torsional performance of the 

structure should not be disregarded because unpredicted 

torsional loads could cause significant damages to structures. 

So far, torsion in reinforced concrete (RC) structures has 

received least attention compared to bending and shear in RC 

structures.  

The use of nonlinear analytical technology has recently been 

attempted to match and rival performance-based design and 

assessment of RC structures constructed in critical earthquake 

regions. Modeling strategies to predict global responses of 

structural systems have been focused on the local failures of a 

member since inelastic behaviors are concentrated at the end 

region of members. An early approach to model the behavior 

had involved the use of nonlinear spring at the ends of member 

to capture such inelastic behavior. Distributed nonlinearity 
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models had also used to provide more accurate and detailed 

descriptions of inelastic behaviors in RC members [1]-[5]. One 

other approach is the use of a strut-tie model, having a portion 

of the structure or the entire structure modeled as a system of 

struts and ties, where struts represent compressive forces in 

concrete while ties represent tension forces in the reinforcing 

bars [6]-[8]. The strut-tie model is, nevertheless, suitable for 

predicting shear strength in deep RC beams and walls but is not 

capable of evaluating inelastic deformation of members or 

cyclic response of members under seismic loads, since it is only 

based on the equilibrium equation. In contrast, a lattice model 

possesses capability to predict deformation as well as strength 

in the inelastic analysis of RC structures. 

Lattice model can evaluate shear strengths of structural 

members and inelastic deformations at both global and local 

levels. It also possesses shear transmission ability, which is 

achieved by treating a connection like a moment-resisting beam 

in a frame. Two and three dimensional lattice models 

reportedly had been employed to investigate influences of 

material meso-structure of concrete, in which a linearly elastic 

and purely brittle behavior was adopted at element level 

[9]-[11]. In this research, a nonlinear lattice model has been 

introduced to predict nonlinear torsional behaviors of structural 

members. This lattice model has also been extended to 

high-strength concrete columns subjected to cyclic load 

reversals, and constitutive laws of high-strength concrete have 

been implemented. Confinement effects of high-strength 

concrete and hysteretic model of steel bars have also been 

introduced. The effective width of a strut is determined by the 

principle of minimization of strain energy. Torsional analysis 

using the lattice model has been attempted by several 

researchers [12]-[14]; however they did not clearly define the 

process for determining parameters of cross-sectional areas in 

the lattice members. 

In this study, an optimization technique is used to determine 

the parameters of cross-sectional area of lattice model. Pure 

torsion tests on normal and high strength RC beams are carried 

out. Based on the test results, the proposed lattice model is 

verified. 

A. Review Stage Fixed-Truss Lattice Model 

The lattice model consists of flexural members, diagonal 

members, arch members, longitudinal members, and transverse 

members. In the lattice model, d is determined by the distance 

between the centers of the longitudinal members. Due to that 

the diagonal members are placed with angle of 45° or 135°, the 

lattice model is classified as a fixed-truss model. As results the 

diagonal crack of concrete in the lattice model will be fixed as 
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45°, and dowel action and aggregate interaction cannot be 

directly considered. The arch member is introduced to consider 

the flows of internal forces, thus enabling adequate prediction 

of the shear-resistance mechanism [15]. Analysis model for the 

torsional analysis of reinforced concrete structures has been 

developed based on the concept of an eight-node lattice element 

as shown in Fig. 1. The lattice element composes of concrete 

and reinforcements such as flexural compressive members, 

flexural tensile members, diagonal compressive members, 

diagonal tensile members, and arch members. Members in the 

directions of longitudinal and transverse axes represent both 

concrete cover and reinforcement bars. The areas of those 

members are taken to be equal to the original concrete cover 

and cross-sectional areas of reinforcements in the structure. 

Arch members connecting the nodes at opposite diagonal 

corners between the loading point and the bottom of the column 

are arranged according to the directions of internal compressive 

stress flows. 

The cross-sectional areas of the diagonal and arch concrete 

members are determined by the principle of minimum strain 

energy. Fig. 2 illustrates the concept of the proposed lattice 

model. 

 

 

Fig. 1 Concept of 8-node lattice element model 

 

 

(a) Concrete (b) Rebar, Arch (c) RC column 

Fig. 2 Concept of 3D lattice members 

B. Lattice Modeling for Steel and Concrete 

The three-dimensional lattice element is consisted of 

twenty-four vertical and horizontal concrete members, twelve 

diagonal concrete members, and twelve reinforcement 

members. The three-dimensional lattice element is formulated 

within the finite element technique framework. The stiffness 

matrix of an 8-node lattice element is given in (1) and is derived 

based on the virtual displacement principle as: 

 

K
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cd
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where Bc , Bcd  , and Bs  are the compatibility matrix of the 

concrete, the diagonal truss (concrete), and reinforcement bars, 

respectively. Dc
, Dcd , and Ds

is the material matrix of the 

concrete, the diagonal truss and reinforcement bars, 

respectively. A representation of the cross-sectional division of 

the three-dimensional lattice model of RC beam is shown in Fig. 

3. The values of tb and td in the three-dimensional lattice models 

are determined by minimizing the total potential energy in (2). 

This function is employed as the objective function of the 

optimization problem as: 

 

Fi ⋅ li ⋅ε i∑         (2) 

 

whereFi , li , and ε i are the member force, member length, and 

member strain, respectively. 

The cross-sectional area of concrete in the lattice model is 

divided into the arch part and the truss part, as shown in Fig. 3. 

The area of the arch member is determined by tb and td . The 

total area of the longitudinal members and the vertical 

reinforcement area in the lattice model are equal to the original 

reinforcement in the RC structure. Therefore, the longitudinal 

reinforcement ratio and the transverse reinforcement ratio in 

the lattice model are equal to the reinforcement ratios of the RC 

structure. 

Arch members were placed inside the model to trace shear 

and torsion resistance mechanisms. The position and 

orientation of the arch member is an important factor of shear 

resistance and they are determined by the linear elastic analysis 

results. Details of the cross-sectional area of the lattice element 

are shown in Table I. 
 

TABLE I 
DETERMINATION OF SECTION AREA IN LATTICE MODEL 

Member Section Area Note 

Arch 

Aarch2D =
1

2
⋅b ⋅ tb ⋅d ⋅ td ⋅ sinθ

 

Aarch3D =
1+m2 + n2

1+m2








3

2

⋅Aarch2D

 

b, d: size of RC section 
 
θ : angle between RC 

section and arch member 

 
m=(b-c)/d 

 

n=h/d 
 

h: height of RC structure 

 
a: length of shear span 

 

c: cover of RC member 
 

Al: vertical rebar area 
 

Aw: horizontal rebar area 

 
nl, ns : number of rebar each 

direction of section 

Truss 

A
truss−xy =

b(1− tb )
2m

⋅
d

2
⋅ sin45°

 

Atruss−yz =
h(1− tb )

2
⋅
d

2
⋅ sin45°

 

A
truss−zx =

a

2n
⋅
d

2
⋅ sin45°

 
Concrete 
Vertical 

Ac =
1

4
⋅c ⋅(1− tb ) ⋅b ⋅ (1− td ) ⋅d

 

Bar 

Vertical 

As1 =
nl

4
+
ns

4
−1







⋅Al
 

As2 =
nl

2
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As3 =
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2
⋅Al

 

Bar 

Horizontal 
Aw−lattice =

0.5d

s
⋅Aw
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Fig. 3 Partition of cross section of 3D lattice model 

C. Lattice Modeling for Steel and Concrete 

The lattice model of the structure requires optimal values of 

tb and td for minimum strain energy. These variables, varying 

between 0 and 1, consist of the ratio of cross-sectional area of 

the arch member to the cross-sectional area of the entire 

concrete member. As mentioned earlier, strain energy is the 

objective function in the optimization. The Sequential 

Unconstrained Minimization Technique (SUMT) method is 

employed for the optimization technique to determine the 

minimum value of the objective function using penalty 

parameters within the range of possible values from the 

boundary area of dominant constraints. The SUMT method 

embraces three techniques: internal penalty function method, 

external penalty function method, and a combination of the two 

aforementioned methods. The proposed lattice model, however, 

employs just the external penalty function method. In the 

objective function, defined in (3), the design variables are tb and

td . The four constraints are expressed in (4), (5), (6) and (7).  

The objective function is: 

 

MinimumΠ(tb ,td ) = σ iAiδ i / li
i=1

Num−ele

∑
 

    (3) 

 

and is subjected to 

G(1) = 1− tb ≥ 0           (4) 

 

G(2) = tb ≥ 0            (5) 

 

G(3) = 1− td ≥ 0           (6) 

 

G(4) = td ≥ 0  
          (7) 

 

where Π , σ i
, Ai , and δ i

 are the strain energy, stress, 

cross-sectional area, and relative deformation of each member, 

respectively. 

II. CONSTITUTIVE LAWS OF MATERIALS 

A. Concrete 

The Mohd Yassin model was employed for the concrete 

non-linear constitutive model as shown in Fig. 4. It uses the 

Kent-Park concrete model as the monotonic envelope and the 

hysteretic rule proposed by Karsan and Jirsa for cyclic reversals 

[16]-[18]. The monotonic curve, consisting of three sections, is 

expressed by (8), (9) and (10) as: 

 

fc = fc
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f
c

= f
c
′ 1− Z (ε

c
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0
)[ ]                          (9) 

 

BC section:  

f
c

= 0.2 f
c
′                                  (10) 

 

Z =
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− ε
0

         (11) 
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4
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where f
c

 is the concrete stress in concrete, f
c
′  is the 

compressive strength of concrete, Z is expressed by (11) and 

(12), ′′ρ  is the transverse rebar ratio, ′′b  is the width of the 

concrete core and s is the interval of the transverse rebar. The 

OA section of the Mohd Yassin model is expressed as a 

quadratic function, the AB section is expressed as a linear 

function, and the BC section is expressed as a constant 

function.  

The confinement effect of normal strength concrete is 

computed by the equation suggested by Mander et al. [8], 

which are formulated in (13) and (14) as: 
 

 f
cc
′ = ′f

c
2.254 1+ 7.94( f

l
′ / f

c
′ ) − 2( f

l
′ / f

c
′ ) − 1.254



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  f
l
′ = 0.75ρ

w
f
wy
          (14) 

 

where f
c
′  is the compressive strength of concrete prior to 

confinement, ρw  is the transverse reinforcement ratio and f
wy
 

is the yield strength of the transverse rebar. 

In high-strength concrete, strength enhancement due to the 

confining effect of transverse reinforcement, as defined by 

Sheikh and Uzumeri [19], is expressed as:  
 

  f
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′ = 0.86 ′f

c
+ 10.3(αρ

w
f
wy

)
0.4                    (15) 
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    (16) 

 

where b
i
is the spacing of the longitudinal reinforcements, b

c
 is 

the center-to-center spacing of the stirrups or hoop sets, d
c
is 

the center-to-center width of the stirrups or hoop sets, ρ
w
 is the 

ratio of transverse reinforcement, and f
wy
 is the yield strength 

of the transverse reinforcement. 
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Fig. 4 Stress-strain relationship by monotonic loads 

B. Steel Reinforcements 

The reinforcing steel stress-strain behavior is determined by 

Monti and Nuti model [20]. This model can predict the local 

buckling behavior of the reinforcement bar under compressive 

loads. The representative plot of the model is depicted in Fig. 5. 

 

 

Fig. 5 Stress-strain relationship of steel bars 

III. VERIFICATION OF THE PROPOSED LATTICE MODEL 

A. Experimental Program 

Torsional analysis was performed to validate the proposed 

lattice model for RC structures. Two RC beams were designed 

according to ACI 318 [21]. The first beam was constructed with 

a concrete compressive strength of 21 MPa and the second 

beam was constructed with a concrete compressive strength of 

40 MPa. The span length of the beam was 3,000 mm, the 

cross-sectional area of the beam was 300 mm × 300 mm, and 

the thickness of the cover concrete was 50 mm. The 

longitudinal rebar was composed of 4-D16 rebar and the 

transverse rebar was composed of D10 rebar with a general 

spacing of 150 mm. The yield stress of the rebar was 400 MPa. 

Details of the specimen are shown in Fig. 6. 

Details of the pure torsion beam test setup are shown in Fig. 

7. The first boundary was designed with upper and lower rollers 

to enable elongation of the specimen; the second boundary was 

designed for pure torque. A 300 kN-capacity actuator is used to 

applied torsion load to the specimen. The circumferential 

direction of loading, which is the center of the torsion, 

coincides with the center of the cross-section. The loading 

speed was set at 1 mm/sec. 

 

 

Fig. 6 Detail of specimen 

 

 

Fig. 7 Test setup 

 

To evaluate behaviors under pure torsion, a twist angle was 

calculated by measuring displacement of each of the four 

measurement points on one side of the specimen. The distance 

between the measuring points in the longitudinal direction is 

2,000 mm and the distance between the measuring points in the 

transverse direction is 200 mm. The twist angle was calculated 

by an equation proposed by Peng and Wong [22] as:  

 

  θ = arctan
L

3i
− L

3 j
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− arctan
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b
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
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where b  is the distance between measuring points in the 

transverse direction, h  is the distance between measuring 

points in the longitudinal direction and L2i
, L2 j

, L3i
, and L3 j

are the displacements of the measuring points.  

A plot of the relation between twist angle and torque is 

shown in Fig. 8. Observed ultimate torques were12.052 kN-m 

for C21, and 14.515 kN-m for C40. Obtained ultimate twist 

angles were 1.267 degree/m for C21, and 1.504 degree/m for 

C40. 

B. 3-Dimensional Lattice Analysis 

Torsional strength of the beam was evaluated using the 

proposed lattice model. The length of one side of the lattice 

element is 100 mm. The lattice model for torsional analysis is 

shown in Fig. 9. The values of tb and tdwere determined using 

nonlinear optimization technique, SUMT. The value of tb is 

identical to the value of tdbecause the specimens have square 

cross-sections. The optimal value of tb is 0.44 for specimen 

C21 and 0.3 for specimen C40. 
 

!fc

0.5 !fc

fc

0.2 !fc

εo = 0.002 ε50c ε20c

A

B C
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Fig. 8 Torque-twist angle relation in experimental results 

 

 

Fig. 9 3-D lattice modeling of beam 

 

The obtained numerical results were compared with 

experimental results in terms of torque-twist angle responses as 

plotted in Fig. 10. The proposed model well predicts torsional 

strengths of both RC members. However, post-peak behaviors 

do not correlate well with experimental results.  
 

 

(a) C21  

 

 

(b) C40 

Fig. 10 Torque-Twist angle relation of analytical results 

IV. CONCLUSION 

In this study, a lattice model capable of predicting torsional 

behavior of reinforced concrete members is proposed. The 

essential model parameters for the lattice element are 

determined using the optimization technique minimizing the 

system potential energy. Two cases of correlation studies 

between experimental and numerical results are performed. 

The correlation study involves two pure torsion tests of normal 

and high strength concrete beams with square cross-sections. 

Discrepancies in post-peak response between numerical and 

experimental results are observed; however, the proposed 

lattice model is capable of representing the general responses of 

the tested specimen. 
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