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Abstract—This study presents a new model of the human image 

quality assessment process: the aim is to highlight the foundations of 
the image quality metrics proposed in literature, by identifying the 
cognitive/physiological or mathematical principles of their 
development and the relation with the actual human quality 
assessment process. The model allows to create a novel 
categorization of objective and subjective image quality metrics. Our 
work includes an overview of the most used or effective objective 
metrics in literature, and, for each of them, we underline its main 
characteristics, with reference to the rationale of the proposed model 
and categorization. From the results of this operation, we underline a 
problem that affects all the presented metrics: the fact that many 
aspects of human biases are not taken in account at all. We then 
propose a possible methodology to address this issue. 
 

Keywords—Eye-Tracking, image quality assessment metric, 
MOS, quality of user experience, visual perception. 

I. INTRODUCTION 
HE switch from the Quality of Service paradigm to the 
Quality of Experience in multimedia content analysis is 

driven by the desire of the market to center products and 
services on the necessities and expectations of the users [1]. 
The consequence of this idea is that digital content should be 
optimized to fulfill the expectations of the users, rather than to 
reduce its impact on the technological platform used to create 
or deliver it. One of the main problems, then, is to create 
metrics that could capture the “human perceived quality” of 
multimedia content. The field of Image Quality Assessment 
(IQA) is one of the most prolific in delivering new and 
improved “human quality metrics”. The usual categorization 
of these metrics relates to the necessity of comparing a 
degraded content (an image) with its original unimpaired 
version, to obtain a quality score. The metrics that do not 
require this comparison at all are called No-Reference (NR) 
metrics. Reduced-Reference (RR) metrics require a limited 
number of comparisons between degraded and original content 
(for example, to train the algorithm), while Full-Reference 
(FR) metrics need to perform the comparison between each 
distorted version of an image and its original. Our work 
proposes a new categorization scheme that does not study the 
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performance [2], [3] of the analyzed algorithms or their input 
requirements. Our scheme groups the most used and reliable 
metrics according to their level of simulation of the human 
image quality judging process. The paper is organized as 
follows. Section 2 presents the chosen metrics. Section 3 
includes the categorization itself, with details of the principle 
we used to develop it and with the explanation of a problem 
that, in our opinion, is worth to be addressed. Section 4 
concludes our study with a brief summary and our proposal to 
address the problem we identified. 

II. RELATED WORK 
In literature, plenty of contributions refer to the problem of 

image quality assessment, as this issue has been currently 
being studied since the first experiments on image 
compression. Moreover, with the current pervasive presence 
of multimedia in different contest (network and  mobile 
systems), the problem of image quality evaluation has become 
crucial in the computer vision field. In our opinion, the 
traditional categorizations in subjective vs. objective metrics, 
and, among the second ones, in full, reduced, and no reference 
metrics, are too reductive to fully understand which aspects of 
the human visual and cognitive perception are involved in the 
metrics. The present paper addresses this problem. However, 
before considering our modelization of human visual and 
cognitive perception of an image, it is useful to review briefly 
the most important contributions in literature. 

A. Subjective Metrics 
The aim of this study is to categorize the most used image 

quality objective metrics in relation to how much they take 
into account the human behavior. Therefore, we need to 
introduce the ground truth quality metric: the Mean Opinion 
Score (MOS). To measure the human perceived quality from 
an image or a set of images, the only fully reliable way is to 
ask directly to a group of observers how would they rate the 
quality of the stimulus they were subject to. This is a 
subjective image quality experiment. Each user gives a quality 
score for each stimulus he/she watches, and the average of the 
scores on the same stimulus becomes the MOS for that image. 
There are guidelines that are used to perform the most 
accurate and unbiased experiments in many fields [4] - [6], 
and there are reviews that clearly indicate what are the best 
methods [7] and rating scales [8] for a IQA or VQA subjective 
experiment. The human process of multimedia quality 

Maria Grazia Albanesi, Riccardo Amadeo 

T

A New Categorization of Image Quality Metrics 
Based On a Model of Human Quality 

Perception 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

989

 
 

 

evaluation is not very clear, yet. The Human Visual System 
has been widely studied in relation to its ability to perceive, 
understand and rate the quality of a visual stimulus, for 
example in [9]. It is widely accepted the Human Visual 
System (HVS) has low-level features and high-level features. 
Bottom-up models of the HVS mainly exploit low-level 
characteristics such as contrast sensitivity and perceptual 
decomposition [10], and they are strictly linked to involuntary, 
stimulus driven attention mechanisms. Top-down models, 
instead, rely on high-level features. These features refer to 
voluntary attention; they are closely connected to the 
experience of the users and to the assigned task.  

However, the generation of the subjective quality score for 
a stimulus involves all these HVS characteristics, and more. 
For example, the choice of a quality score is also affected by 
the testers’ bias toward the content of the stimulus, by their 
personal expectations and experience, by the user’s language 
property and understanding, and by the entire set of factors 
that maybe affect human-to-human communication in general. 

B. Objective Metrics 
We enumerate the different objective metrics that are part 

of our categorization including in this list a brief description of 
the metrics/algorithms. The principle of our choices is to 
identify and categorize the metrics that are widely recognized 
as the best performing ones or as the most innovative. Their 
correlation with the MOS is the measure of their performance, 
which we do not take into account for the categorization. We 
relied on other studies [2], [11] to identify the best performing 
algorithms and, as we are explaining in detail in section 3, we 
arrange them in categories on the base of the idea behind their 
development. 

1. Full Reference Metrics 
PSNR/MSE: These two metrics are the most known and 

used to measure image similarity. They rely on mathematical 
comparison between a reference image and a degraded version 
of the same image. Although being excellent to measure the 
image similarity, they do not reflect the human perceived 
quality [12], [13]. 

DM/NQM[14]: the Distortion Measure and the Noise 
Quality Measure are two metrics that heavily rely on the 
notion that there is separation between the psychovisual 
effects of image filtering and noise. This leads to the creation 
of two metrics that use the contrast pyramid of Peli’s[15] work 
as a base. Moreover, the contrast interaction between the 
spatial frequencies of the images and the contrast masking 
effect are also accounted using this model. The psychovisual 
effects of frequency distortions are quantified by using a low 
pass Contrast Sensitivity Function (CSF) and a Discrete 
Cosine Transform (DCT), a model for the HVS. The last step 
is the generation of a quality score. 

UQI[16]: This Universal Quality Index exploits a 
modelization of the distortions as a combination of luminance 
distortion, contrast distortion and loss of correlation between 
the original image and elaborated image. These so called 
“quality features” are measured locally on the test images and 

then combined together to obtain a single score for each 
image. 

IFC[17]: the acronym stands for Information Fidelity 
Criterion. It is centered on an information-theoretic framework 
based on Natural Scene Statistics (NSS). The inventors of this 
algorithm worked on the assertion that a Quality Assessment 
problem can be modeled as a transmission channel. The 
mutual information between the input and the output of this 
channel (the original and the elaborated test image) quantifies 
the amount of information that the human observer can ideally 
extract from the test image itself. The authors use an NSS 
Gaussian scale mixture to model the source (input). The 
distortion (transmission channel) is simply modeled by signal 
attenuation and additive Gaussian noise (this model captures 
two important and complementary distortion types on images: 
blur and additive noise) to create the test stimuli. The IFC 
criterion is then mathematically derived from the mutual 
information between the two stimuli. It aims to understand 
how similar two images are. It is a completely mathematical 
methodology to calculate the similarity of two images rather 
than the human perceived image quality. 

VIF/VIFP[18]: VIF is the generalization of the IFC. The 
Visual Information Fidelity metric exploits the same IFC 
framework with the aim of rating the human perceived quality 
of an image. It works between two pairs of stimuli: it 
compares the reference image with a version of itself when the 
transmission channel has no distortion and when instead the 
distortion is present. The mutual information between these 
two pairs of stimuli is then extracted, and the VIF score is a 
simple ratio of the two. This metric is computationally 
expensive, so the authors created VIF in the pixel domain 
(VIFP), to reduce the computational burden. 

SSIM[19]: The Structural SIMilarity index is one of the 
most known and studied image quality metrics, and of the best 
performing. Its core is the assumption that the HVS has 
evolved to extract structural information from the stimuli. The 
metric follows this idea: it considers the distortions as 
perceived changes in the structural information of an image. 
The SSIM metric design comes from the perspective of image 
formation. Two signals are decomposed in three different 
components, the luminance one, the contrast one and the 
structure one. These three components undergo a paired 
comparison and a similarity measure is extracted by 
combining the result of the comparisons. 

MSSSIM [20]: Multi Scale SSIM. As the name explains 
quite well, this is the extension of the SSIM metric to a multi 
scale elaboration of the two input signals. This means that 
after the extraction of luminance, structure and contrast 
components from the image at scale 1, the algorithm 
iteratively applies a low pass filter and a downsamples the 
filtered image by a factor of 2. From this point on, only the 
contrast and structure component are extracted after each 
iteration of the algorithm. The final comparison metric is a 
combination of all the measures extracted at different scales. 

FSIM/FSIMc[21]: Feature SIMiliarity. This metric is based 
on the notion that visually discernable features coincide with 
those points where the Fourier waves at different frequencies 
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have congruent phase (points with a high Phase Congruency, 
PC). PC is the first feature used by the FSIM/FSIMc 
algorithms. The second feature is the image gradient 
magnitude (GM). The PC is contrast invariant, so the authors 
of this algorithm included the GM to include the effect of local 
contrast in their metric. The difference between FSIM and 
FSIMc is simply that the first and original algorithm does not 
account for the chrominance component of the image (it is 
thought for grey scale images), while the second version does. 

HLFSIM[22]: the HLFSIM metric is an enhanced version of 
FSIM. As explained, FSIM uses visual low-level features to 
extract an image quality score. HLFSIM extends this set of 
features by including high-level ones, i.e. the Regions of 
Interest (ROI). The authors calculate a fixation density map 
for each image, which is used to “weigh” the low-level 
features extracted by the FSIM algorithm. 

PSNR-HVS, UQI-HVS[23]: these two metrics extend two 
previously used mathematical metrics for image quality, the 
PSNR and the UQI, integrating HVS characteristics in both of 
them. The PSNR-HVS uses the DCT coefficients and the 
JPEG quantization table to integrate the PSNR, simulating the 
HVS masking effect on blocks of 64x64 pixels. The UQI 
enhancement instead is made by a wavelet decomposition of 
the stimulus into four different subbands. The four subbands 
of both the reference and the test image undergo a paired 
comparison to obtain an UQI measure for each of them. These 
four values are then merged into a single quality score. 

PSNR-HVS-M[24]: it is a further improvement of the 
PSNR-HVS metric. The authors slightly modify the algorithm 
they introduced to increase its performance. They apply a 
masking model on the top of the previous algorithm, 
increasing its similarity with the low-level behavior of the 
HVS and also increasing its performance in relation to the 
ground truth data. 

PSNR-HA, PSNR-HMA[25]: these two algorithms also 
propose modifications to the original PSNR, in order to 
improve its quality prediction capabilities. The authors’ 
contribute, in both cases, is to use PSNR-HVS or PSNR-HVS-
M between the reference image and a corrected-
mean/corrected-contrast version of the test image. This 
preprocessing correction is used to calculate a modified 
version of the MSE for the standard PSNR. The difference 
between the HA and the HMA algorithm lies in the utilization 
of PSNR-HVS or PSNR-HVS-M to perform the modified 
MSE calculation. 

VSNR[26]: Visual Signal to Noise Ratio is a wavelet based 
metric. It addresses the issue that visual detectability of 
distortion does not always correlate with the human perceived 
quality. The metric is designed to evaluate both low-level and 
mid-level HVS features. The aim of this is to include the 
effects of suprathreshold distortions in the quality score. 
VSNR works in two stages: the first computes the contrast 
detection thresholds, while the second estimates visual fidelity 
by measuring the perceived contrast and the extent to which 
the distortions disrupt global precedence. The second stage is 
performed only if the first one finds visually relevant 
distortions in the test image. The algorithm considers global 

precedence as a high-level property of the HVS, which is 
supposed to integrate an image edges in a coarse-to-fine-scale. 

2. Blind/No Reference Metrics 
BRISQUE[27]: the Blind/Referenceless Image Spatial 

Quality Elevator utilizes a Natural Scene Statistic (NSS) 
model framework of locally normalized luminance 
coefficients. Its aim is to quantify the “naturalness” of a 
Natural Scene using the parameters extracted by the statistic 
model. The author of this metric claim that the chosen 
parameters are sufficient to quantify the naturalness of an 
image and, consequently, that it is possible to extract a quality 
score from that information. It requires a calibration phase to 
tune the algorithm to the type of distortions that are under 
evaluation. 

NIQE[28]: the idea behind the Natural Image Quality 
Evaluator metric is similar to the precedent one. The authors 
extract a set of ‘quality aware’ features from an image and try 
with mathematical procedures to infer the human perceived 
image quality. They use a NSS model to derive these features. 
When the set is completed, the procedure elaborates the image 
quality as the distance between a multivariate Gaussian 
(MVG) fit of the NSS features taken from the impaired image, 
and a MVG model of the quality aware features extracted 
from the corpus of natural images. The deep difference 
between NIQE and BRISQUE is that NIQE does not require a 
tuning phase, and therefore it returns good results without 
being tied to any specific distortion types. 

DIIVINE[29]: Distortion Identification-based Image Verity 
and INtegrity Evaluation. The statistical properties of Natural 
Scenes are the basis of this metric, too. The image is 
decomposed with a wavelet transform: the wavelet 
coefficients are used to extract a vector of statistical features 
that is description of the image distortions. This vector is used 
to estimate the probability that one particular distortion type in 
a set of many afflicts the stimulus under analysis. Then the 
algorithm maps the feature vector onto a quality score for each 
distortion category. In the end, the combination of the 
probability values with the mapping results returns a final 
quality value for the image. 

BLIINDS-II[30]: it is another non distortion-specific metric 
based on NSS. The authors considered the NSS modeling and 
HVS modeling as dual problems. The framework operates 
entirely in the DCT domain. At first, the test image is subject 
to a 2D DCT coefficient computation. Then, a generalized 
Gaussian density model is applied to each block of DCT 
coefficients. The third step is to derive the generalized 
Gaussian model parameters, which are used in the last step (in 
combination with a Bayesian estimator) to obtain a quality 
score for the image. 

III. THE CATEGORIZATION 
In order to create a taxonomy of the metrics described in 

section 2, we propose a model of the MOS generation 
procedure: it can be divided into different steps, which 
roughly represent the human quality evaluation process. Our 
model goes from the appearance of the image to the HVS to 
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the “formalization” and communication of the human opinion 
score about the stimulus. We then categorize the metrics 
introduced in the previous section according to the main idea 
that drove their development, and according to a the steps of 
the model which are mainly involved in the metrics.  

The process of MOS generation is a complex translation of 
the several component of quality assessment of the human 
visual perception/cognition into a coded number, according to 
the adopted scale of opinion scores[31],[32].  We propose to 
model this process into five steps (see Fig. 1), which ideally 
represent the “flow” of the subjective score from the image, 
“through” the user, to the database of the researchers, where 
the quality scores of all the images are saved before analyzing 
them. The steps are the following: 
• The image itself: in this block, we consider all the features 

of the visual stimuli, which can be related to the pixel or 
frequency domain. Common characteristics, such as 
luminance and chrominance components, may have affect 
differently the human perceived quality. For example, a 
mobile device offers a different experience from 50’ 
LCD. The metrics that are mainly based on this block 
have a strong mathematical foundation, with no 
simulation of the HVS.   

• The physiological level of the HVS (or the low-level 
features): in this block, we consider the low-level HVS 
behavioral characteristics, such as those who exploit 
contrast sensitivity or masking effects. 

• The cognitive level of the HVS (high-level features) in 
this block high level HVS behavior is explored. Instead of 
relying on near threshold effects, the metrics based on this 
block consider different biases, such as the memory or 
semantic conditioning. 

• The attentive level of the HVS (high-level features): this 
block describes the driving mechanism of the human 
gaze. The metrics in this block, together with the previous 
ones, form the high-level HVS features based metric. 

• The human-human interaction: in this block, we consider 
all the aspects involved in the communication of the user 
score to the researchers, i.e., the language-generated bias, 
the level of understanding of the rating scale and more. 

 

 
Fig. 1 The model of the MOS generation process 

Fig. 2 shows a summarization of the categorization: on the 
lines, the several metrics are listed. On the columns, the five 
steps of the model, representing different component of the 
human perception, are listed. A black arrow means that the 
metric take into account, in some parts of its definition, the 
corresponding step. Only MOS generation of subjective 
metrics is able to cover all the aspects, while all the other 
objective metrics are very limited in catching the high-level 
features and in the human-human interaction process.  

We call this aspect “the gap” between subjective and 
objective metrics (see Section IV). In the following 
Subsections, a deep explanation of the resulting categorization 
of Fig. 2 is given. 

A. Image Based Metrics 
Only the metrics that do no simulate directly the HVS 

behavior appear in this section. This means that we include in 
this section only the metrics that are a pure mathematical 
instrument to evaluate the human perceived quality. All the 
No-Reference metrics we introduced fall under this category: 
BRISQUE, NIQE, DIIVINE, BLINDS-II. To use the idea 
expressed in [30]: it is possible to avoid modeling poorly 
understood functions of the HVS, by exploiting established 
models of the natural environment. The four metrics rely on 
the assumption that a collection of “quality-aware” features 
extracted from a set of Natural Scene Statistics of each 
stimulus is enough to estimate the human perceived quality. 
The authors of [29] state that certain statistical properties of 
the natural scenes are altered in the presence of distortion, and 
this makes them un-natural. In the field of the Full-Reference 
metrics, instead, it is quite simple to place in this category the 
MSE and PSNR. These two metrics simply perform a 
mathematical comparison between the reference and the test 
image, without taking into account the HVS in any way. Their 
poor performance in the field of QoE evaluation has been 
proved in several studies. UQI is a mathematically defined 
universal image quality index. The authors specify that the 
index does not depend on the observers, the viewing condition 
or the test images. It models any distortion as a combination of 
three factors, as said, that are a form “quality-aware” features. 
The authors state that the success of their experimental activity 
is due to the ability of measuring structural distortion that 
happens when an image is impaired. The structural approach 
is also the core of SSIM (and its multi scale variation, 
MSSSIM). The base of this work is the assumption that the 
HVS is highly adapted to extract structural information from a 
scene. The direct consequence is that a measure of the 
structural change of an image can return a good measure of the 
perceived image distortion. This is what the metric tries to 
infer, with its algorithm. The philosophy considers image 
degradations as perceived changes in structural information. 
The algorithm works on signal decomposition, its final aim is 
to highlight the structure of the image. There is no direct 
involvement of any HVS-related procedure beside the 
hypothesis. Our choice is to consider SSIM and MSSSIM as 
two mathematically based metrics. 
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Fig. 2 The novel categorization of image quality assessment metrics in literature. On the columns, the different aspects of human perception 
involved in the quality assessment task involved in our model 

 
The two metrics, in fact, account for the HVS in the initial 

general hypothesis (what is the “structural change” of an 
image? How is it rigorously defined?) but they mainly rely on 
signal decomposition without modeling the HVS behavior to 
extract the final quality score. The last algorithms we place in 
this category are the IFC and the consequent VIF/VIFP. IFC is 
a mathematical fidelity metric that, like MSE and PSNR, does 
not involve parameters related to the physics of the display, to 
the experimental set up or to psychovisual data. The VIF 
metric design only involves a ratio between to IFC calculated 
scores; therefore, it shares the same IFC theoretical 
framework. According to our categorization, then, it is an 
image based metric. 

B. Low-Level HVS Features Based Metrics 
This section introduces the metrics that are based on the 

utilization of low-level features of the HVS. 
Algorithms/metrics designed around the utilization of masking 

schemes or temporal/spatial decomposition of signals are the 
typical examples of the kind of metrics we think can be in this 
category, and probably the most widely used property of the 
Human Visual System in these metrics is the contrast 
sensitivity [9]. Let us analyze first the DM and NQM metrics. 
We define this two metrics as psychovisually based because, 
even if they work on signal decomposition, the authors 
simulate the behavior of the HVS by quantifying the 
psychovisual effects of frequency distortions using the CSF 
and the DCT, which are typical procedures that simulate the 
HVS behavior [9]. In addition to that, or maybe even more 
importantly, they use the contrast pyramid of Peli’s work [15] 
to model the variation in contrast sensitivity with distance, 
dimensions and spatial frequency of the stimuli, and with the 
variation of their local luminance mean. The use of the 
contrast pyramid is what characterizes this metric. The 
simulation of nonlinear threshold characteristics of spatial 
vision makes the NQM and DM metrics the paradigm of low-
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level HVS features based metrics. Another approach that relies 
on low-level HVS features and that differs from the direct 
simulation of HVS behavior is the one in FSIM. The authors 
of FSIM state that salient low-level features convey crucial 
information for the HVS to interpret the scene. Therefore, the 
image quality can be inferred by comparing low-level features 
between the reference and the test stimulus. Why is the 
Feature SIMilarity metric in this category while other 
“feature-based” metrics were in the previous category, then? 
Because FSIM algorithm analyses features that can give 
information about the structure of the scene, and it does not 
use a “classic” NSS approach. FSIM, in other words, uses the 
idea behind SSIM (structural similarity) and applies it to 
known HVS-related relevant image features (Phase 
Congruency and Gradient Magnitude) instead that to the 
features that best identify the image structure. The link 
between PC and GM and the psychovisual behavior of the 
HVS has been proved in many neurobiology studies [33], [34]. 
The FSIMc metric is the same metric that accounts for the 
chrominance component; it then follows the categorization for 
the original FSIM. In the set of metrics we chose, there is a 
subset of metrics that take its origin from the PSNR (or the 
UQI) and that modify it using HVS based procedures. The 
idea behind PSNR-HVS is to use a weighted cosine transform 
model to alter the calculation of the PSNR [35], which means 
that the purely mathematical index becomes an HVS weighted 
one.  The same procedure, even if using the principle of high 
sensitivity of the HVS to distortion caused in low-frequency 
range, is used to modify UQI. In consideration of this, we 
consider both PSNR-HVS and UQI-HVS two low-level HVS 
features based metrics. PSNR-HVS-M, PSNR-HA, PSNR-
HMA are modifications of the PSNR-HVS algorithm that do 
not alter its founding principle: they follow the parent 
algorithm in our categorization. We choose to place these 
metrics in this section because they focus on considering the 
human behavior, adding its modelization to pure mathematical 
methodologies. We underline that, even if the structure of the 
algorithms is still theoretical, the implementation of real-world 
procedures defines the subset of PSNR based algorithms as 
“HVS” oriented, which is their real “core”. 

C.  High-Level HVS Features Based Metrics 
The HVS primarily analyzes and understands the images 

based on its low-level features, [33], [34] so the Image Quality 
Evaluation metrics are usually designed around those kind of 
characteristics of the stimuli. Recently, though, also the high-
level features of the HVS have been studied and implemented 
into quality algorithms [36], usually following two directions: 
the cognitive one and the attentive one. The cognitive aspects 
of the visual process are mainly the ones related to 
suprathreshold detection of the distortions. Low-level 
features, i.e. the CSF, are fundamental to identify near-
threshold distortions. These distortions are barely perceived 
by the human eye due to their spatial frequency being close to 
the Contrast Sensitivity Function, but they heavily affect the 
human perceived quality. How to account for effect of 
suprathreshold distortions in a quality metric, instead, is still 

under evaluation. Previous research [37], [38] proved that, 
when a distortion is clearly visible, the low-level HVS effects 
(such as spatial frequency dependence and masking effects) 
are, to a first approximation, negligible. The meaning is that 
cognitive quality algorithms are an interesting topic of 
research and that there is room to improve the IQA metrics by 
adding them cognitive models. In the set of metrics we 
analyzed, we identified only the VSNR as a cognitive based 
algorithm, which, in fact, directly addresses the suprathreshold 
distortions problem by proposing a top-down visual model 
based on global precedence(see section 2).  

The other approach is the attentive one. An algorithm that 
uses and attentive approach to IQA is an image that exploits 
the information given by the “semantically interesting” 
regions of the stimulus. In simple words, the regions that are 
“watched” by the observers. Many different psychological 
effects can influence these Regions of Interest (RoI), (such as 
change blindness [39], inattentional blindness [40], presence 
of semantic clue such as faces or bright spots, memory effect 
and many more) but there is still one only way to identify the 
RoI (or saliency map) of an image: to ask, directly or 
indirectly, to the users. From Eye-Tracking experiments 
and/or subjective experiments, attentive models for automatic 
saliency prediction have been developed [41]. Those models 
usually are the base for attentive quality metrics, which are 
best known as RoI based or saliency based. The set of metrics 
we identified includes one clearly attentive metric, the 
HLFSIM. HLFSIM is an enhancement of FSIM that 
introduces the high-level attention concepts to a low-level 
feature based metric. 

IV. A PROPOSAL TO BRIDGE THE GAP 
As pointed out in the classification based on the MOS 

generation model, the main proposals of metrics in literature 
do not take into account some aspects of the model. However, 
several interdisciplinary studies are currently under 
investigation for including cognitive and attentive aspects.  In 
our opinion, the more critic and ignored step is the human-
human interaction (see Fig. 1).  

A. The Human-Human Interaction Problem 
In our schematization of the subjective image quality score 

collection process, we included a phase in which the 
numerical value of the perceived quality is generated by the 
perceptive, cognitive, and attentive processes and is coded and 
stored in the  database of results. Looking at Fig. 1, we 
modeled a block that represents the personal judgment of each 
tester. We now focus our analysis on that block: we see that 
the subjective characteristics of the visual strategy of a generic 
tester have been studied in the previous blocks, which means 
that al the metrics we introduced till now cover the 
psychovisual process of the image quality evaluation. The 
research on image quality, though, usually requires a database 
of quality scores. Therefore, the researcher needs to collect a 
set of quality scores from different testers. Each tester has to 
communicate, somehow, his/her quality judgment of each 
stimulus through natural or numerical language. In 
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consideration of this, to model the IQA process it is necessary 
to account, for the task of the experiment [42], the experience 
of the testers, the gender, the cultural background, the 
psychological expectations, the language property and 
comprehension and so on. Subjective tests, metrics and results 
have been widely studied and standardized exactly with this 
aim but the distance between objective and subjective (ground 
truth) image quality metrics still exists. Because of this, we 
suggest that the current methodology of modeling the not-
perfectly-understood HVS characteristics into objective 
quality algorithms might not be the only approach to close the 
gap between objective quality scores and the Mean Opinion 
Score. Work in this direction has already been done, for 
example in [13], [43], [44], but in our analysis of the best 
performing objective IQA we found that the current state-of-
the-art methodologies simply account for visual processes and 
not judgment/communication processes of the human 
observers. We can define this problem, by absurd, with this 
question: if we consider the best objective IQA metrics as 
ground truth for the image quality, did we do enough to 
“move” the subjective quality evaluation methodologies 
towards the objective ones? In our opinion, according to the 
fact that we did not find any account for this in our 
categorization of current objective metrics, the answer is no. 
In the next section of this study, we introduce how we will 
address this topic in the future. 

B. A Possible Solution to Bridge the Gap 
As pointed out in the previous sections, the current 

developed metrics are not able to bring inside their algorithms 
some important aspects of human perception, because it 
encompass very different components, both from 
physiological and cognitive/psychological points of view. In 
particular, by referring to our model of Fig. 1, the High-Level 
HVS features blocks and the human-human communication 
blocks are seldom considered. In order to bridge this gap, new 
ideas are necessary. In our point of view, the proposed model 
of human perception and the consequent categorization of 
metrics, highlights one of the shortcomings of the most used 
image quality metrics: at the present time, it is structurally 
impossible for these metrics to account for all the voluntary 
subjectivity that is involved in the human quality evaluation 
process. This subjectivity is an important part of the procedure 
and it is one of the causes of the performance deficit of the 
objective metrics. We showed that the current metrics are not 
designed to account for these aspects of the judging process 
and that it might be useful to try different approaches to close 
the gap between subjective and objective metrics. Literature 
includes several contributions that underline[45], [46]the 
correlation between the HVS behavior(registered by an Eye-
Tracking device) and the human perceived quality. Moreover, 
in this paper we explained how the exploitation of High-Level 
features such as the attentive ones is already being used to 
develop image-based metrics. For this reason, we suggest to 
reverse the standard methodology: by investigating the 
correlation between the Eye-Tracking data and the MOS it is 
possible to bypass the human-human interaction biases 

without losing information about the cognitive and attentive 
processes (see Fig. 3). 

 

 
Fig. 3 Our proposed utilization of the Eye-Tracking technology 

 
This approach is able to introduce two different 

improvements: one is the proposal of a new framework for 
subjective image quality evaluation experiments, where the 
Eye-Tracked data can be used to infer a physiological measure 
of the perceived quality, and, at the same time, to exclude all 
the human-human communication biases. 

On the other hand, in the field of objective image quality 
evaluation, it would be possible to create an objective metric 
based on actual data from the human experience (Eye-Tracked 
data), instead of data from visual stimuli or statistic models. 
This is why we called it a “reverse methodology”, because it 
starts from the human side and not from the stimuli side. For 
this reason, we consider Eye-Tracking a powerful tool to 
realize this innovation. Fig. 3 shows how, in our proposed 
approach, the quality score database is populated by data 
representing the processing of all the blocks of the human 
perception (Stimulus, Eye, Brain) but it excludes the main 
sources of arguable criticism (score definition and linguistic 
limitations). We experimented this approach in our previous 
studies for video quality assessment [47], [48], obtaining 
promising results. Therefore, we aim to verify this reverse 
methodology to IQA. 

V.  CONCLUSION AND FUTURE WORK 
Our study proposes a new model for the generation of the 

human perceived quality score of an image. We apply our 
model to better understand the current, most used IQA 
metrics. As a result of our investigation, we define a 
categorization of these metrics that highlights a critical aspect: 
it is impossible for them to map the human bias introduced by 
the necessary communication between the observers and the 
researcher. This indicates a possible reason for the 
performance gap existing between the current objective QoE 
metrics and the ground truth data (MOS).  

Then, we suggest a methodology based on Eye-Tracking 
data to reduce this gap, which can beneficial for both objective 
and subjective metrics. The improvement can be the reduction 
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of the human-human interaction bias and by disjoining the 
objective quality score from the image content and from any 
model of the not perfectly understood HVS. 
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