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Abstract— In this paper, the elasto-plastic and cyclic torsion of 

a shaft is studied using a finite element method. The Prager kinematic 

hardening theory of plasticity with the Ramberg and Osgood stress-

strain equation is used to evaluate the cyclic loading behavior of the 

shaft under the torsional loading. The material of shaft is assumed to 

follow the non-linear strain hardening property based on the Prager 

model. The finite element method with C1 continuity is developed 

and used for solution of the governing equations of the problem. The 

successive substitution iterative method is used to calculate the 

distribution of stresses and plastic strains in the shaft due to cyclic 

loads. The shear stress, effective stress, residual stress and elastic and 

plastic shear strain distribution are presented in the numerical results. 
 

Keywords—Cyclic Loading, Finite Element Analysis, Prager 

Kinematic Hardening Model, Torsion of shaft. 

I. INTRODUCTION 

HE hysteresis behavior of structural members under cyclic 

loading is very important in investigation of the dynamic 

response of members against repeated loading, e.g. 

earthquake, cyclic thermo-mechanical loading of pressure 

vessels, dynamic cyclic loading of shaft and wind motion of 

structures. Generally, this kind of loading may lead to failure 

of the structural parts due to low cycle or high cycle fatigue of 

the materials through the loss of structural integrity [1]. One of 

the most commonly used methods in the modeling of elastic-

plastic loading of structures is the incremental flow theory of 

plasticity which describes the yielding of the material by work 

hardening models, a yield surface, and a flow law. The earliest 

model used is the isotropic hardening model proposed by Hill 

[2]. Hill assumed that equal hardening occurs in all directions 

in yield surface and so this model considers that the plastic 

flow occurs in all directions. However, in cyclic loadings this 

model cannot predict the experimental evidence of the 

Bauschinger effect, which is significant due to stress reversals. 

To overcome this difficulty, Prager [3] in 1956 suggested the 

kinematic hardening model, which was later modified by 

Ziegler [4] in 1959. Considering a single yield surface, Prager 

[3] attempted to represent strain hardening by the rigid body 

translation of the yield surface in the stress space. Another 

nonlinear hardening model is Armstrong and Frederick model 

[5] that can predict the ratcheting response of materials in 

cyclic loading. Ziegler [4] assumed that the translation of the 
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yield surface is in the direction of the vector joining the stress 

point on the yield surface and the center of the yield surface. 

In the recent years Mahbadi and Eslami [6] and [7] in 2002 

and 2006 studied the cyclic loading of beams and thick vessels 

based on the Proger and Armstrong–Frederick kinematic 

hardening model. In this paper the cyclic torsion of a shaft in 

the elastic-plastic zone is studied using the Prager kinematic 

hardening model via the finite element formulation. The 

stress-strain and residual shear stress and strain in the shaft 

subjected to cyclic loading is obtained in the developed finite 

element code.  

II. FORMULATION 

Consider a prismatic bar subjected to a twisting couple. One 

end of the bar is assumed to be fixed against rotation but not 

against warping. At the other end a couple T with a moment 

along z axis is applied. In the absence of tension and bending 

loads, the only nonzero strains in the bar are the shear strains 

εxz and εyz. In this problem, the equilibrium equations in x and 

y direction identically are satisfied and the equilibrium 

equations in z direction can be written as; 
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Now the stress function φ is introduced such that  
 

     

,xz yz
y x

φ φ
τ τ

∂ ∂
= = −

∂ ∂  (2) 

 

By substitution of (2) in (1) the only equilibrium equation is 

identically satisfied. For a prismatic bar in torsion, it can be 

shown that the compatibility equations for infinitesimal 

displacement can be converted to  
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where α is a constant. Using the elastic-plastic stress-strain 
relation the shear strains could be written as; 
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where εpxz and ε
p
yz are the accumulated plastic components of 

the total shear strain. By substituting (4) in to (3) the 

compatibility equations is obtained in terms of the stresses as;

 

2 ( , )
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τ τ
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in which g(x, y) is defined as; 
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Now by substituting the stress function 

the following equation will be obtained; 
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And φ=0 on the boundary of the domain. The torque acting 

on the section of the shaft can be obtained by; 

 

2T dxdyφ= ∫∫           

III. FINITE ELEMENT MODEL

In this paper the finite element method is used to solve (8) 

with his boundary conditions. For increasing the accuracy the 

rectangular element with C
1
 continuity is used. For this, a 

quadratic element with 4 node and 3 degree of freedo

each node is applied to solve the problem. This element with 

the natural coordinate is shown in Fig. 1. The governing 

equation of the problem is discretized using this finite element 

model.  

 

Fig. 1 The selected 4 node C1 continuous element

 

The element with the length 2a and width 

natural coordinate as; 
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are the accumulated plastic components of 

hear strain. By substituting (4) in to (3) the 

compatibility equations is obtained in terms of the stresses as; 

     (5) 

     (6) 

Now by substituting the stress function φ from (2) in to (5), 

     (7) 

=0 on the boundary of the domain. The torque acting 

on the section of the shaft can be obtained by;  

       (8) 

ODEL 

In this paper the finite element method is used to solve (8) 

with his boundary conditions. For increasing the accuracy the 

continuity is used. For this, a 

quadratic element with 4 node and 3 degree of freedom in 

each node is applied to solve the problem. This element with 

the natural coordinate is shown in Fig. 1. The governing 

equation of the problem is discretized using this finite element 

 

continuous element 

and width 2b can be map to 

               (9) 

Using this finite element model of the stiffness matrix can 

be obtained as; 
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and the force vector can be obtained as;
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In which the Jacobean of transformation is defined as;
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The details of the stiffness and force matrix are not given 

hear. In this study the Prager kinematic hardening model is 

used to model the cyclic loading and the method of successive 

approximation is used to evaluate the nonlinear plastic 

behavior of the material. In this method, the loading path is 

divided in to the number of increment. For each increment of 

load the successive approximation is used to evaluate the 

plastic strains. This method is described in detail in 

Prandtl-Reuss plastic stress-

study. 

IV. RESULTS AND 

The cyclic loading of circular and square shaft subjected to 

torsion is studied in this section. In the numerical results the 

material is supposed to obey the Ramberg and Osgood stress

strain equation. The stress

Ramberg and Osgood equation can be written as

 

( )nm
E E

σ σ
ε = +    

 

where ε is the strain, σ is the stress 
elasticity of the material and 

constants. The following dimensionless parameters are defined 

as; 

 

0 0 0
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in which σ0 is the yield stress and 
material. Using the dimensionless parameters defined in

relations in (13) can be written as;

 

1
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In this study the Ramberg
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Using this finite element model of the stiffness matrix can 

[ ] [ ] [ ][ ]g gK B D B dA= =

1 1[ ] [ ] [ ][ ] [ ] | |l lB J D J B J d dξ η− −       (10) 

and the force vector can be obtained as; 
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In which the Jacobean of transformation is defined as; 
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The details of the stiffness and force matrix are not given 

hear. In this study the Prager kinematic hardening model is 

used to model the cyclic loading and the method of successive 

approximation is used to evaluate the nonlinear plastic 

terial. In this method, the loading path is 

divided in to the number of increment. For each increment of 

load the successive approximation is used to evaluate the 

plastic strains. This method is described in detail in [8]. 

-strain equation is used in this 

ESULTS AND DISCUSSIONS  

The cyclic loading of circular and square shaft subjected to 

torsion is studied in this section. In the numerical results the 

material is supposed to obey the Ramberg and Osgood stress-

equation. The stress-strain equation according to 

Ramberg and Osgood equation can be written as [8], 

                  (13) 

is the stress E is the module of 

elasticity of the material and m and n are the material 

constants. The following dimensionless parameters are defined 

0 0 0

, , ,
p

x x xσ ε ε
σ ε ε

= = =                 (14) 

is the yield stress and ε0 is the yield strain of the 
nsionless parameters defined in (14), 

(13) can be written as; 

( )n ne S m S                   (15) 

In this study the Ramberg-Osgood parameters are chosen:

2=  and E=200GPa.  
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By using the following parameters the dimensionless stress-

strain equation can be obtained as; 

 

220e S S= +                     (16) 

 

In which e=ε/ε0 is the dimensionless strain and S=σ/σ0 is 

the dimensionless stress. The stress strain diagram according 

to (16) is shown in the Fig. 2. 

 

 

Fig. 2 The stress-strain curve of the shaft in tension and compression 

A. Shaft with Circular cross-Section 

First the numerical results presented for a shaft with circular 

cross-section. The shaft diameter is chosen R=0.1m. In this 

study the torque T which causes the first yielding and plastic 

strain in the shaft is called the critical torque Tcrit. In the first 

example a shaft with R=0.1 m are loaded to T=3Tcrit. The 

distribution of the dimensionless shear stress τθz/σ0 in the 

section of the shaft is shown in Fig. 3 and the distribution of 

the plastic shear strain εpθz/ε0 is shown in the Fig. 4. It is seen 
from Fig. 4 that in r<0.25R the shaft is in elastic zone and 

εpθz=0. For r<0.25R the shaft is entered to the plastic zone. 

The maximum plastic shear strain in the shaft is in r=R and is 

εpθz=2.5ε0. 
 

 

Fig. 3 Distribution of the shear stress τθz in the cross section of the 

circular shaft (T=3Tcrit) 

 

 

Fig. 4 Distribution of the dimensionless plastic shear strain 0/p
zθε ε  

in cross-section of the shaft 

 

Fig. 5 shows the effective stress versus effective strain 

diagram of a point at r=R of circular shaft due to torsion. It is 

seen that the effective stress-effective strain diagram of the 

shaft coincided with the Ramberg-Osgood diagram of the 

material of the shaft.  

 

 

Fig. 5 Effective stress versus effective strain diagram of the material 

 

Fig. 6 shows the dimensionless shear stress-shear strain 

diagram of the shaft that loaded to T=3Tcrit and unloaded to 

T=0 which is drawn for outside surface of the shaft at r=R. it 

is seen that plastic strains is occurred in the unloading of the 

shaft.  

 

 

Fig. 6 Loading of circular shaft to T=3Tcrit and unloading to T=0 

 

The shear stress versus shear strain diagram at outside 

surface of the shaft due to cyclic loading between T=3Tcrit and 

T=-3Tcrit is shown in Fig. 7 reversed plasticity behavior is seen 

after loading, unloading and reloading in Fig. 7. 
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Fig. 7 Cyclic loading of circular shaft between 

B. Shaft with Square Cross-Section 

In this section a shaft with square cross

L=W=a=0.1m that loaded to plastic zone are studied. The 

distribution of the shear stress τxz in the cross
shaft for T=2Tcrit are shown in Fig. 8. Plastic zone is seen in 

the Fig. 8. The distribution of plastic shear strain 

cross section of the square shaft is shown in Fig. 9.

 

Fig. 8 Distribution of the shear stress τxz in the cross section of square 
shaft (T=2Tcrit) 

 

Fig. 9 Distribution of the shear strain εpxz in the cross section of 
square shaft (T=2Tcrit) 

 

Fig. 10 shows the Ramberg-Osgood stress

(solid line in the figure) and the effective stress versus 

effective strains in the middle of the side of the square shaft 

(x=a, y=0) in loading to T=3Tcrit and unloading to 

(circles o).  

 

 

 

Fig. 7 Cyclic loading of circular shaft between T=3Tcrit and T=-3Tcrit 

In this section a shaft with square cross-section 

that loaded to plastic zone are studied. The 

in the cross-section of the 

are shown in Fig. 8. Plastic zone is seen in 

the Fig. 8. The distribution of plastic shear strain εpxz in the 
cross section of the square shaft is shown in Fig. 9. 

 

in the cross section of square 

 

in the cross section of 

 

Osgood stress-strain curve 

(solid line in the figure) and the effective stress versus 

side of the square shaft 

and unloading to T=0 

Fig. 10 Effective stress and effective stress diagram for a loading to 

T=3Tcrit and unloading to 

Fig. 11 shows the effective stress versus effective strai

point x=a and y=0 in cyclic loading of the shaft between 

T=2TCrit and T=-2TCrit. Reversed plasticity is seen in the figure 

for cyclic loading. 

Fig. 11 Cyclic loading of square shaft between 

V. CONCLUSION

In this paper, a finite element method with C

element is conjugated with a numerical iterative method which 

is quite capable and efficient to handle the analysis of the 

cyclic loading of structures is proposed to analysis the 

torsional cyclic loading of shafts.

cyclic loading of shafts under different types of torsion is 

studied. The Prager kinematic hardening model is employed to 

model the strain hardening behavior of the material. It is 

concluded that the cyclic loading of shaft based on

model results into reversed plasticity for all types of cyclic 

loadings, provided that the material strain hardening curves in 

tension and compression are identical.
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concluded that the cyclic loading of shaft based on the Prager 
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