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Abstract—In this paper analysis of an infinite beam resting on 

tensionless extensible geosynthetic reinforced granular bed overlying 
soft soil strata under moving load with constant velocity is presented. 
The beam is subjected to a concentrated load moving with constant 
velocity. The upper reinforced granular bed is modeled by a rough 
elastic membrane embedded in Pasternak shear layer overlying a 
series of compressible nonlinear Winkler springs representing the 
under-lied very poor soil. The tensionless extensible geosynthetic 
layer has been assumed to deform such that at interface the 
geosynthetic and the soil have some deformation. Nonlinear behavior 
of granular fill and the very poor soil has been considered in the 
analysis by means of hyperbolic constitutive relationships. Detailed 
parametric study has been conducted to study the influence of various 
parameters on the response of soil foundation system under 
consideration by means of deflection and bending moment in the 
beam and tension mobilized in the geosynthetic layer. This study 
clearly observed that the comparisons of tension and tensionless 
foundation and magnitude of applied load, relative compressibility of 
granular fill and ultimate resistance of poor soil has significant 
influence on the response of soil foundation system.  

 
Keywords—Infinite Beams, Tensionless Extensible 

Geosynthetic, Granular layer, Moving Load and Nonlinear behavior 
of poor soil 

I. INTRODUCTION 
IVIL engineers, especially geotechnical engineers face 
several challenges in the construction of earth structures 

like retaining walls and embankments which cater to the 
development of transport infrastructure. Soil reinforcement 
plays a major part in strengthening of earth structures and 
utilization of soft foundation soils. In recent years, 
geosynthetics are commonly used in reinforced earth beds 
over-lying poor soil. Geosynthetics are widely utilized for the 
improvement of the bearing capacity and reduction in 
settlement response of foundation on poor soils. Analysis of 
reinforced soil structures subjected to external forces can be 
done based on many mechanics like classical continuum 
mechanics or lumped mass model or finite element modeling. 
As lumped parameter modeling is relatively easier to 
formulate, many researchers have contributed in this area. 
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Most of literatures are related to static loading conditions as 
well as linear response of poor soil strata. Some of these 
studies are due to Madhav and Poorooshab [9], [10], Ghosh 
and Madhav [4], [5], Shukla and Chandra [11]–[13], Yin [14]–
[16], Zhan and Yin [17]. Hence there is a need to develop new 
analytical methods for nonlinear response of tensionless 
extensible geosynthetic - reinforced foundation subjected to 
moving load under the very poor soil. 

In the present work, modeling and analysis of an infinite 
beam resting on tensionless extensible geosynthetic 
reinforced-granular bed on soft soils has been studied with the 
lifting up partially and losing contact with the soils. The 
reinforcement has been considered to be tensionless extensible 
and compatibility conditions as suggested by Yin [14] have 
been incorporated, reducing the number of parameters 
involved in this analysis. The foundation assumed to react 
only in compression. The nonlinear responses of tensionless 
extensible geosynthetic - reinforced foundation and foundation 
reaction in tension have been compared and further various 
parametric studies have been conducted considering values of 
input parameters with respect to the Indian railway conditions 
and the influence of various parameters of soil – foundation 
system. Finite difference method is used for the solution of 
governing differential equations of the model and all the 
results have been presented in non-dimensional forms. The 
properties of different layers of base, sub-base and foundation 
may be incorporated in the model by taking the equivalent 
stiffness of the nonlinear spring. 

II. STATEMENT OF THE PROBLEM AND PROPOSED MODEL 
Fig. 1 shows the definition sketch of the problem 

considered in the infinite beam resting on tensionless 
extensible geosynthetic reinforced granular fill – poor soil 
system. The infinite beam has been founded on a granular fill 
layer overlying poor foundation soil of thickness (H) and 
subjected to concentrated moving load (P). A geosynthetic 
layer has been placed inside the granular fill layer which 
divides the granular fill layer into two, having thicknesses as 
Ht and Hb as shown in Fig. 1. The shear modulus of upper and 
the lower layer of granular fill are Gt and Gb respectively, 
while μt and μb are the interfacial friction coefficients at the 
top and bottom of the reinforcement layer respectively. The 
response of the beam under the action is to be found out. 

Fig. 2 depicts the proposed model for the soil – foundation 
model under consideration. The poor soil subgrade has been 
idealized as nonlinear Winkler springs and the granular fill 
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The horizontal force equilibrium equation of the rough 
elastic membrane element at time t > o, can be written as; 

 
( , )cos sin ( ) ( ) tant t b b t b

T x t T q q K q q
x x

∂ ∂
− = − + − −

∂ ∂
θθ θ μ μ θ (3) 

 
where, qb is the vertical force interaction between the 
membrane and the shear layer, µband µt are the interface 
coefficients at the bottom and top faces of membrane 
respectively, K is the coefficient of lateral stress, θ is the slope 
of the membrane, T(x, t) is the mobilized tensile in the 
geosynthetic layer. 

The vertical force equilibrium equation for the rough elastic 
membrane element at time t > 0 can be written as: 

 
( , )sin cos ( )tan ( )t t b b t b

T x t T K q q q q
x x

∂ ∂
+ = − + + −

∂ ∂
θθ θ μ μ θ  (4) 

 
From (3) and (4), one can write, 
 

2 2

(1 )( ) tansec
(1 tan ) (1 tan )

t t b b
t b

K q qTq q
K x K

− +∂
= + −

+ ∂ +
μ μ θθ θ

θ θ
  (5) 

 

Substituting for 
x
θ∂

∂
 in terms of vertical displacement, w(x, 

t) in to (5), and one can write; 
 

2

1 2 2sect b
wq X q X T

x
∂

= −
∂

θ        (6) 

 
where, 

2

1 2

1 tan (1 ) tan
1 tan (1 ) tan

b

t

K KX
K K

θ μ θ
θ μ θ

+ − −
=

+ + −
      (7a) 

2 2

1
1 tan (1 ) tant

X
K Kθ μ θ

=
+ + −

     (7b) 

 
The shear modulus of granular layers can be expressed by 

considering hyperbolic shear stress – shear strain response [4], 
[5] as; 

 
0

2
0 /

1

t
t

t

u t

GG
G d w d x

=
⎡ ⎤

+⎢ ⎥
⎣ ⎦τ       (8a) 

0
2

0 /
1

b
b

b

u b

GG
G d w d x

=
⎡ ⎤

+⎢ ⎥
⎣ ⎦τ        (8b)

 

 
where, Gto and Gbo are initial shear modulus of upper and 
lower granular layer respectively. τut and τub are the ultimate 
shear resistance of upper and lower granular layer 
respectively.  

Considering the hyperbolic nonlinear Stress- displacement 
relationship [7], qs can be expressed as,  

0

01

s
s

s

u

k wq k w
q

=
+

           (9) 

 
where, kso is the initial modulus of subgrade reaction of poor 
soil and qu is the ultimate bearing capacity of the poor soil. 

Combining (1), (2), (6), (8) and (9), 
 

2
0

1 2 1 2
0

( cos )
1

s
t t b b

s

u

k w wq X G H X T G H Xk w x
q

∂
= − + +

∂+
θ (10) 

 
where, q is the reaction of the granular fill on beam.  

Combining (3) and (4), we get 
 

2( )(1 )sin ( )(1 tan )cost b t t b b
T q q K q q K
x

∂
= − − − + +

∂
θ μ μ θ θ  (11) 

 
Combining (1), (2), (9) and (11) following equation can be 

obtained: 
 

2 2
0

3 42 2
0

( , ) ( , )

1
t

s
t b b

s

u

k wT w x t w x tX q G H X G Hk wx x x
q

⎛ ⎞
⎜ ⎟⎛ ⎞∂ ∂ ∂⎜ ⎟= − + − −⎜ ⎟∂ ∂ ∂⎜ ⎟⎝ ⎠ +⎜ ⎟
⎝ ⎠

 (12) 

 
where,  

2
3 ( cos (1 tan ) (1 ) sin )tX K Kμ θ θ θ= + − −    (13a) 

2
4 ( cos (1 tan ) (1 )sin )tX K Kμ θ θ θ= + + −    (13b) 

 
The differential equation of a moving load on the beam may 

be obtained by considering the bending of an elemental 
segment. The differential equation of the beam with uniform 
cross section can be written as follows: 

 
4 2

4 2 ( , )d w d w dwEI c q P x t
dx dt dt

ρ+ + + =
     

(14) 

 
where, w(x, t) is the deflection of the beam, EI is the flexural 
rigidity of the beam, ρ is the mass per unit length of the beam, 
c is the coefficient of viscous damping per unit length of the 
beam, P(x, t) is the applied load intensity, In the absence of 
damping equation (14) can be written as, 
 

4 2

4 2 ( , )d w d wEI q P x t
dx dt

ρ+ + =       (15)  

 
Equations (10), (12), and (15) govern of the response of the 

proposal model in the absence of damping. For particular 
values of the parameters, these equations govern the response 
of existing models for beams on elastic foundation subjected 
to moving load [1], [6]. 
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IV. SOLUTION OF THE GOVERNING EQUATIONS 
The response of system has been represented as a function 

of distance (x) from the center of the beam at time (t). For 
simplicity, substituting x vtξ = −  where,’ξ ’ is the distance 
from the point of action of loading at time ‘t’. The governing 
differential equations have only one variableξ . 

Equations (10), (12) and (15) can be written as; 
 

2
0

1 2 1 2
0

( cos )
1

s
t t b b

s

u

k w wq X G H X T G H Xk w
q

∂
= − + +

∂+
θ

ξ
(16) 

2 2
0

3 42 2
01

t
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t b b

s

u

k wT w wX q G H X G Hk w
q

⎛ ⎞
⎜ ⎟⎛ ⎞∂ ∂ ∂⎜ ⎟= − + − −⎜ ⎟∂ ∂ ∂⎜ ⎟⎝ ⎠ +⎜ ⎟
⎝ ⎠

ξ ξ ξ
 (17) 

4 2
2

4 2 ( )d w d wEI v q P
d d

ρ ξ
ξ ξ

+ + =        (18) 

 
To observe the settlement response of the proposed model, 

(16), (17) and (18) have been written in non-dimensional form 
as given below, 

 
2

* * * *
1 2 1 *2

*

( cos )
1

t b

u

W Wq X G X T G XW
q

∂
= − + +
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θ
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* 2 2
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q
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4 * 2 * * *

*4 * 2 * *

( )d w d w q P
d I d I I

ρ ξ
ξ ξ

+ + =       (21) 

 
where; * / Lξ ξ= ; * 2

0 0 0/t t t sG G H k L= ; * 2
0 0 0/b b b sG G H k L= ; 

*
0/ sq q k L= ; *

0/ub ub sk L=τ τ ; * 4
0/ sI EI k L=  ; *

0/u u sq q k L=  
*

0/ut ut sk L=τ τ ; * 2 2
0/ sv k L=ρ ρ ; * 2

0/ sT T k L= , /W w L=
* 2 *

0/ sP P k L d= ξ  and P is the applied load, and L is half the 
length of the beam considered. 

Finite difference formulation has been employed to solve 
the differential equations. In these equations, the derivatives 
are expressed by central difference method as follows;  

 
4

2 1 1 2
*4 *4

4 6 4i i i i iW W W W Wd W
dξ ξ

− − + +⎛ − + − + ⎞
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1 1
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      (22b) 

1 1
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i iW WdW
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         (22c) 

In (20) in the term * */dT dξ  is written in backward 

difference from for *1 0ξ− ≤ ≥ , whereas for *0 1ξ≤ ≥  
forward difference is used for the same. 

Writing (19), (20) and (21) in finite difference from within 
the specified space domain for an interior node i, one obtains; 
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 * * 1 1
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*

2
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i i i
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u

W W WWX GW
q

ξ
ξ
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* *3 * *4

2 2* ** *2

*

1

6 2
i i i

P qW W W
I I

I

ξ ξ
ρ ξ − +

⎡ Δ × Δ
= × − − −⎢⎛ ⎞× Δ ⎣−⎜ ⎟

⎝ ⎠  
* *2 * *2

1 1* *4 4i iW W
I I

ρ ξ ρ ξ
− +

⎤⎛ ⎞ ⎛ ⎞× Δ × Δ
− − + × − − + × ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎦
 (25) 

V. BOUNDARY CONDITIONS 
Boundary conditions have been considered at the edge of 

the beam. At both ends of the beam, the deflection of the 
beam, the slope of the deflected shape of the beam and the 
mobilized tension are zero. These boundary conditions can be 
written in non-dimensional form as follows; 

At *ξ = -1 and 1, 
*0, 0dWW

dξ
= = and * 0.T =  

VI. RESULTS AND DISCUSSIONS 
Based on the formulation presented in previous section, a 

computer program was developed using finite difference 
scheme. Complete region of the problem (- L≤ x ≤ L) was 
considered. The total length of the beam (2L) was divided into 
various numbers of elements and it was observed that the 
difference in results corresponding to 800 and 1000 numbers 
of elements was less that 0.5%; hence 800 elements were used 
and the solution was obtained with a tolerance limit of 10-5. 
Half the length of the beam is taken to be large enough for the 
beam to be assumed to act as an infinite beam. The following 
values of parameters have been adopted for the parameter 
study as shown in Table I. 
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