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Existence of Positive Solutions for Second-Order
Difference Equation with Discrete Boundary Value

Problem
Thanin Sitthiwirattham, Jiraporn Reunsumrit

Abstract—We study the existence of positive solutions to the three
points difference-summation boundary value problem. We show the
existence of at least one positive solution if f is either superlinear or
sublinear by applying the fixed point theorem due to Krasnoselskii
in cones.

Keywords—Positive solution, Boundary value problem, Fixed
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I. INTRODUCTION

THE study of the existence of solutions of multipoint
boundary value problems for linear second-order ordinary

differential and difference equations was initiated by Ilin [1].
Then Gupta [2] studied three-point boundary value problems
for nonlinear second-order ordinary differential equations.
Since then, nonlinear second-order three-point boundary value
problems have also been studied by many authors, one may see
the text books [3-4] and the papers [6-11]. However, all these
papers are concerned with problems with three-point boundary
condition restrictions on the difference of the solutions and the
solutions themselves, for example,

u(0) = 0, u(T + 1) = 0

u(0) = 0, au(s) = u(T + 1),

u(0) = 0, u(T + 1)− au(s) = b.

u(0)− αΔu(0) = 0, u(T + 1) = βu(s).

u(0)− αΔu(0) = 0, Δu(T + 1) = 0

u(0) = 0, u(T + 1) = α

η∑
s=1

u(s)

u(0) = β

η∑
s=1

u(s), u(T + 1) = α

η∑
s=1

u(s)

and so forth.
In [6], Leggett-Williams developed a fixed point theorem to

prove the existence of three positive solutions for Hammerstein
integral equations. Since then, this theorem has been reported
to be a successful technique for dealing with the existence
of three solutions for the two-point boundary value problems
of differential and difference equations; see [7,8]. In [9], X.
Lin and W. Liu using the properties of the associate Green’s
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function and Leggett-Williams fixed point theorem, studied the
existence of positive solutions of the problem.

G. Zhang and R. Medina [10], T. Sitthiwirattham and
J.Tariboon [11], studied the existence of positive solutions for
second order boundary value problems of difference equations
by applying the Krasnoselskii’s fixed point theorem. In [12], J.
Henderson and H.B. Thompson used lower and upper solution
methods.

In this paper, we consider the existence of positive solutions
to the equation

Δ2u(t− 1) + a(t)f(u) = 0, t ∈ {1, 2, ..., T}, (1)

with difference-summation boundary condition

u(0) = βΔu(0), u(T + 1) = α

η∑
s=1

u(s), (2)

where f is continuous.
The aim of this paper is to give some results for existence

of positive solutions to (1)-(2).
Let N be the nonnegative integer, we let Ni,j = {k ∈ N| i ≤

k ≤ j} and Np = N0,p. By the positive solution of (1)-(2) we
mean that a function u(t) : NT+1 → [0,∞) and satisfies the
problem (1)-(2).

Throughout this paper, we suppose the following conditions
hold:
(H1) T ≥ 3 is a fixed positive integer, η ∈ {1, 2, ..., T − 1},
constant α, β > 0 such that 0 < α < 2(T+1)

η(η+1) and 0 < β <
2(T+1)−αη(η+1)

2(αη−1) .
(H2) f ∈ C([0,∞), [0,∞)), f is either superlinear or
sublinear. Set

f0 = lim
u→0+

f(u)

u
, f∞ = lim

u→∞
f(u)

u
.

Then f0 = 0 and f∞ = ∞ correspond to the superlinear case,
and f0 = ∞ and f∞ = 0 correspond to the sublinear case.
(H3) a ∈ C(NT+1, [0,∞)) and there exists t0 ∈ Nη,T+1 such
that a(t0) > 0.

The proof of the main theorem is based upon an application
of the following Krasnoselskii’s fixed point theorem in a cone.

Theorem 1. ([5]). Let E be a Banach space, and let K ⊂ E
be a cone. Assume Ω1, Ω2 are open subsets of E with 0 ∈ Ω1,
Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1) −→ K
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be a completely continuous operator such that
(i) ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ � ‖u‖, u ∈
K ∩ ∂Ω2; or
(ii) ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ � ‖u‖, u ∈
K ∩ ∂Ω2.
Then A has a fixed point in K ∩ (Ω2 \ Ω1).

II. PRELIMINARIES

We now state and prove several lemmas before stating
our main results.

Lemma 1. The problem

Δ2u(t− 1) + y(t) = 0, t ∈ N1,T , (3)

u(0) = βΔu(0), u(T + 1) = α

η∑
s=1

u(s), (4)

has a unique solution

u(t) =
2(t+ β)

2(T + 1)− αη(η + 1)− 2β(αη − 1)
×

T∑
s=1

(T − s+ 1)y(s)

− α(t+ β)

2(T + 1)− αη(η + 1)− 2β(αη − 1)
×

η−1∑
s=1

(η − s)(η − s+ 1)y(s)

−
t−1∑
s=1

(t− s)y(s), t ∈ NT+1.

Proof. From Δ2u(t − 1) = Δu(t) −Δu(t − 1) and the first
equation of (3), we get

Δu(t)−Δu(t− 1) = −y(t),

Δu(t− 1)−Δu(t− 2) = −y(t− 1),

...
Δu(1)−Δu(0) = −y(1).

We sum the above equations to obtain

Δu(t) = Δu(0)−
t∑

s=1

y(s), t ∈ NT . (5)

We define
∑q

s=p y(s) = 0; if p < q. Similarly, we sum (5)
from t = 0 to t = h, and by using the boundary condition
u(0) = βΔu(0) in (4), we obtain

u(h+1) = (h+1+ β)Δu(0)−
h∑

s=1

(h+1− s)y(s), h ∈ NT ,

by changing the variable from h+ 1 to t, we have

u(t) = (t+ β)Δu(0)−
t−1∑
s=1

(t− s)y(s), t ∈ NT+1. (6)

From (6) ,

η∑
s=1

u(s) =

(
1

2
η(η + 1) + βη

)
Δu(0)−

η−1∑
s=1

η−s∑
l=1

ly(s)

=

(
1

2
η(η + 1) + βη

)
Δu(0)

− 1

2

η−1∑
s=1

(η − s)(η − s+ 1)y(s)

Again using the boundary condition u(T +1) = α
∑η

s=1 u(s)
in (4), we obtain
(T + 1 + β)Δu(0)−∑T

s=1(T − s+ 1)y(s) =

α

(
1
2η(η+1)+ βη

)
Δu(0)− α

2

∑η−1
s=1 (η− s)(η− s+1)y(s)

Thus,

Δu(0) =
2

2(T + 1)− αη(η + 1)− 2β(αη − 1)
×

T∑
s=1

(T − s+ 1)y(s)

− α

2(T + 1)− αη(η + 1)− 2β(αη − 1)
×

η−1∑
s=1

(η − s)(η − s+ 1)y(s).

Therefore, (3)-(4) has a unique solution

u(t) =
2(t+ β)

2(T + 1)− αη(η + 1)− 2β(αη − 1)
×

T∑
s=1

(T − s+ 1)y(s)

− α(t+ β)

2(T + 1)− αη(η + 1)− 2β(αη − 1)
×

η−1∑
s=1

(η − s)(η − s+ 1)y(s)

−
t−1∑
s=1

(t− s)y(s), t ∈ NT+1.

�

Lemma 2. The function

G(t, s) =
1

Λ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s+ β)[2(T + 1)− αη(η + 1) + 2t(αη − 1)]

+ αs(t+ β)(1− s), s ∈ N1,t−1 ∩ N1,η−1

2(s+ β)(T + 1− t) + αη(t− s)(η + 1 + 2β),

s ∈ Nη,t−1

(t+ β)[2(T + 1)− αη(η + 1) + 2s(αη − 1)+

αs(1− s)], s ∈ Nt,η−1

2(T + β)(T + 1− s), s ∈ Nt,T ∩ Nη,T

(7)
where

Λ = 2(T + 1)− αη(η + 1)− 2β(αη − 1) > 0,
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is the Green’s function of the problem

−Δ2u(t− 1) = 0, t ∈ N1,T ,

u(0) = βΔu(0), u(T + 1) = α

η∑
s=1

u(s). (8)

Proof. Suppose t < η. The unique solution of problem (3)-(4)
can be written

u(t) =−
t−1∑
s=1

(t− s)y(s) +
2(t+ β)

Λ

[ t−1∑
s=1

(T − s+ 1)y(s)×

+

η−1∑
s=t

(T − s+ 1)y(s) +
T∑

s=η

(T − s+ 1)y(s)

]

− α(t+ β)

Λ

[ t−1∑
s=1

(η − s)(η − s+ 1)y(s)

+

η−1∑
s=t

(η − s)(η − s+ 1)y(s)

]

=
1

Λ

t−1∑
s=1

[
(s+ β)[2(T + 1)− αη(η + 1)]

+ αs(t+ β)(1− s)

]
y(s)

+
1

Λ

η−1∑
s=t

[
(t+ β)[2(T + 1)− αη(η + 1) + 2s(αη − 1)

+ αs− αs2]

]
y(s)

+
1

Λ

T∑
s=η

2(T + β)(T + 1− s)y(s)

=
T∑

s=1

G(t, s)y(s).

Suppose t ≥ η. The unique solution of problem (3)-(4) can
be written

u(t) =−
η−1∑
s=1

(t− s)y(s)−
t−1∑
s=η

(t− s)y(s)

+
2(t+ β)

Λ

[ η−1∑
s=1

(T − s+ 1)y(s) +
t−1∑
s=η

(T − s+ 1)y(s)

+

T∑
s=t

(T − s+ 1)y(s)

]

− α(t+ β)

Λ

η−1∑
s=1

(η − s)(η − s+ 1)y(s)

u(t) =
1

Λ

η−1∑
s=1

[
(s+ β)[2(T + 1)− αη(η + 1)]

+ αs(t+ β)(1− s)

]
y(s) +

1

Λ

t−1∑
s=η

[
2(s+ β)(T + 1− t)

+ αη(t− s)(η + 1 + 2β)

]
y(s)

+
1

Λ

T∑
s=t

2(T + β)(T + 1− s)

=

T∑
s=1

G(t, s)y(s).

Then the unique solution of problem (3)-(4) can be written

as u(t) =
T∑

s=1

G(t, s)y(s). The proof is complete. �

We observe that the condition 0 < α < 2(T+1)
η(η+1) and 0 < β <

2(T+1)−αη(η+1)
2(αη−1) . implies G(t, s) is positive on N1,T × N1,T ,

which mean that the finite set{
G(t, s)

G(t, t)
: t ∈ NT+1, s ∈ N1,T

}
,

take positive values. Then we let

M1 = min

{
G(t, s)

G(t, t)
: t ∈ NT+1, s ∈ N1,T

}
(9)

M2 = max

{
G(t, s)

G(t, t)
: t ∈ NT+1, s ∈ N1,T

}
(10)

Lemma 3. Let (t, s) ∈ N1,T × N1,T . Then we have

G(t, s) ≥ M1G(t, t.) (11)

where 0 < M1 < 1 is a constant given by

M1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{
(1+β)[2T−αη(η+4)+3α]

(η+β−1)[2(T+2)+αη(η−3)−2η] ,

2(T+2+α)−αη(η+4)
2(T+2)+αη(η−3)−2η ,
(1+β)[2(T+1−η)−αη(3η+1)]+α(η+β)(2−η)

2(T+β)(T+1−η) ,

2
2(T+2)+αη(η−3)−2η ,

1
2(T+β)(T+1−η)

}
; if α > 1

η

min

{
(1+β)[2(T+2)+αη(η−4)−2η+3α]

(η+β−1)[2T−αη(η−1)] , 2
2T−αη(η−1) ,

(1+β)[αη(2T−η−1)+2]+α(η+β)(2−η)
2(T+β)(T+1−η) ,

1
2(T+β)(T+1−η)

}
; if 0 < α < 1

η

(12)

Proof. In order that (11) holds, it is sufficient that M1 satisfies

M1 ≤ min
(t,s)∈N1,T×N1,T

G(t, s)

G(t, t)
. (13)

Then we may choose

M1 ≤ min

{
min

(t,s)∈N1,η−1×N1,T

G(t, s)

G(t, t)
, min
(t,s)∈Nη,T×N1,T

G(t, s)

G(t, t)

}
.

(14)
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since

min
(t,s)∈N1,η−1×N1,T

G(t, s)

G(t, t)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mint∈N1,η−1{
(1+β)[2(T+1)−αη(η+1)+2t(αη−1)]+α(t+β)(2−t)

(t+β)[2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t)] ,

2(T+1)−αη(η+1)−2(η−1)+α(2−η)
2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t) ,

2
2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t)

}
; if α > 1

η

mint∈N1,η−1{
(1+β)[2(T+1)−αη(η+1)+2t(αη−1)]+α(t+β)(2−t)

(t+β)[2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t)] ,

2(T+1)−αη(η+1)−2(η−1)(αη−1)+α(2−η)
2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t) ,

2
2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t)

}
; if 0 < α < 1

η

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{
(1+β)[2T−αη(η+4)+3α]

(η+β−1)[2(T+2)+αη(η−3)−2η] ,
2(T+2+α)−αη(η+4)
2(T+2)+αη(η−3)−2η ,

2
2(T+2)+αη(η−3)−2η]

}
; if α > 1

η

min

{
(1+β)[2(T+2)+αη(η−4)−2η+3α]

(η+β−1)[2T−αη(η−1)] , 2(T+η+α)−3αη2

2T−αη(η−1) ,

2
2T−αη(η−1)

}
; if 0 < α < 1

η

Similarly, we get

min
(t,s)∈Nη,T×N1,T

G(t, s)

G(t, t)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{
(1+β)[2(T+1−η)−αη(3η+1)]+α(η+β)(2−η)

2(T+β)(T+1−η) ,

2(η+β)+αη(η+1+2β)
2(T+β)(T+1−η) ,

1
2(T+β)(T+1−η)

}
; if α > 1

η

min

{
(1+β)[αη(2T−η−1)+2]+α(η+β)(2−η)

2(T+β)(T+1−η) ,

2(η+β)+αη(η+1+2β)
2(T+β)(T+1−η) ,

1
2(T+β)(T+1−η)

}
; if 0 < α < 1

η

(15)

The (12) is immediate from (15)-(16) �

Lemma 4. Let (t, s) ∈ NT+1 × N1,T . Then we have

G(t, s) ≤ M2G(t, t.) (16)

where M2 ≥ 1 is a constant given by

M2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
2(T+1−η)

2(T+α)−αη2 ,
(η−1+β)[αη(2T−η−1)+2]

2(η+β) ,

2(T−1+β)+αη(T−η)(η+1+2β)
2(η+β) , 1

}
; if α > 1

η

max

{
2(T+1−η)

2(T+2−η−α)+αη(η−4) ,

(η−1+β)[2(T+1−η)+αη(η−1)
2(η+β) ,

2(T−1+β)+αη(T−η)(η+1+2β)
2(η+β) , 1

}
; if 0 < α < 1

η

(17)

Proof. For k = 0, from (7) we get

G(0, s) = 2β(T + 1− s) < 2β(T + 1) = G(0, 0).

Then we may choose M2 = 1. For k ∈ N1,T , if (16) holds, it
is sufficient that M2 satisfies

M2 ≥ max
(t,s)∈N1,T×N1,T

G(t, s)

G(t, t)
. (18)

Then we may choose

M2 ≤ min

{
max

(t,s)∈N1,η−1×N1,T

G(t, s)

G(t, t)
, max
(t,s)∈Nη,T×N1,T

G(t, s)

G(t, t)

}
.

(19)
since

max
(t,s)∈N1,η−1×N1,T

G(t, s)

G(t, t)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxt∈N1,η−1{
(t−1+β)[2(T+1)−αη(η+1)+2t(αη−1)]

(t+β)[2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t)] ,

2(T+1)−αη(η+1)+2(η−1)(αη−1)+α(η−1)(1−t)
2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t) ,

2(T+1−η)
2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t)

}
; if α > 1

η

maxt∈N1,η−1{
(t−1+β)[2(T+1)−αη(η+1)+2t(αη−1)]

(t+β)[2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t)] ,

2(T+1)−αη(η+1)+2t(αη−1)+α(η−1)(1−t)
2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t) ,

2(T+1−η)
2(T+1)−αη(η+1)+2t(αη−1)+αt(1−t)

}
; if 0 < α < 1

η

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
(η−2+β)[2(T+2−η)+αη(η−3)

(1+β)[2(T+α)−αη2] , 2(T+2−η)+αη(η−3)
2(T+α)−αη2 ,

2(T+1−η)
2(T+α)−αη2

}
; if α > 1

η

max

{
(η−2+β)[2T−αη(η−1)

(1+β)[2(T+2−η−α)+αη(η−4)] ,
2T−αη(η−1)

2(T+2−η−α)+αη(η−4) ,

2(T+1−η)
2(T+2−η−α)+αη(η−4)

}
; if 0 < α < 1

η

Similarly, we get

max
(t,s)∈Nη,T×N1,T

G(t, s)

G(t, t)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
(η−1+β)[αη(2T−η−1)+2]

2(η+β) ,

2(T−1+β)+αη(T−η)(η+1+2β)
2(η+β) , 1

}
; if α > 1

η

max

{
(η − 1 + β)[2(T + 1− η) + αη(η − 1)

2(η + β)
,

2(T−1+β)+αη(T−η)(η+1+2β)
2(η+β) , 1

}
; if 0 < α < 1

η

For k = T + 1m from (7) we get,

G(T + 1, s) = αη(s+ β)[2(T + 1)− (η + 1)]

+ 2s(T + 1 + β)(1− s)

< αη(T + 1 + β)[2(T + 1)− (η + 1)]

+ 2T (T + 1 + β)(T + 1)

= G(T + 1, T + 1).
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Then we choose M2 = 1. So (18) is immediate from (21)-(22).
�

III. MAIN RESULTS

Now we are in the position to establish the main result.

Theorem 2. Assume (H1) - (H3) hold. Then the problem
(1)-(2) has at least one positive solution.

Proof. In the following, we denote

m = min
t∈Nη,T

G(t, t), M = max
t∈NT+1

G(t, t).

Then 0 < m < M.
Let Ebe the Banach’s space defined by E = {u : NT+1 →

R}. Define

K = {u ∈ E : u � 0, t ∈ NT+1 and min
t∈N1,T

u(t) ≥ σ ‖ u ‖}.

where σ = M1m
M2M

∈ (0, 1), ‖ u ‖= maxt∈NT+1 | u(t) |. It is
obvious that K is a cone in E.

We define the operator F : K → E by

(Fu)(t) =

T∑
s=1

G(t, s)a(s)f(u(s)), t ∈ NT+1.

It is clear that problem (1)-(2) has a solution u if and only
if u ∈ K is a fixed point of operator F . We shall now show
that the operator F maps K to itself. For this, let u ∈ K, from
(H2)− (H3), we get

(Fu)(t) =
T∑

s=1

G(t, s)a(s)f(u(s)) ≥ 0, t ∈ NT+1. (20)

from (10), we obtain

(Fu)(t) =
T∑

s=1

G(t, s)a(s)f(u(s)) ≤ M2

T∑
s=1

G(t, t)a(s)f(u(s))

≤M2M
T∑

s=1

a(s)f(u(s)), t ∈ NT+1.

Therefore

‖ Fu ‖≤ M2M

T∑
s=1

a(s)f(u(s)). (21)

Now from (H2), (H3), (2.7) and (3.2), for t ∈ Nη,T , we have

(Fu)(t) ≥M1

T∑
s=1

G(t, t)a(s)f(u(s)) ≥ M1m

T∑
s=1

a(s)f(u(s))

≥M1m

M2M
‖ Fu ‖= σ ‖ u ‖ .

Then

min
t∈Nη,T

(Fu)(t) ≥ σ ‖ u ‖ . (22)

From (20)-(21), we obtain Fu ∈ K, Hence F (K) ⊆ K. So
F : k → K is completely continuous.

Superlinear case. f0 = 0 and f∞ = ∞. Since f0 = 0, we
may choose H1 > 0 so that f(u) � ε1u, for 0 < u � H1,
where ε1 > 0 satisfies

ε1M2M

T∑
s=1

a(s) ≤ 1. (23)

Thus, if we let

Ω1 = {u ∈ E : ‖u‖ < H1},
then for u ∈ K ∩ ∂Ω1, we get

(Fu)(t) ≤M2

T∑
s=1

G(t, t)a(s)f(u(s)) ≤ ε1M2M
T∑

s=1

a(s)u(s)

≤ε1M2M

T∑
s=1

a(s)‖u‖ ≤ ‖u‖.

Thus ‖Fu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1.
Further, since f∞ = ∞, there exists Ĥ2 > 0 such that

f(u) ≥ ε2u, for u ≥ Ĥ2, where ε2 > 0 satisfies

ε2M1σ
T∑

s=η

G(η, η)a(s) ≥ 1. (24)

Let H2 = max{2H1,
̂H2

σ } and Ω2 = {u ∈ E : ‖u‖ < H2}.
Then u ∈ K ∩ ∂Ω2 implies

min
t∈Nη,T

u(t) ≥ σ‖u‖ ≥ Ĥ2.

Applying (9) and (24), we get

(Fu)(η) =M1

T∑
s=1

G(η, s)a(s)f(u(s)) ≥ M1

T∑
s=η

G(η, η)a(s)f(u(s))

≥ε2M1

T∑
s=η

G(η, η)a(s)y(s) ≥ ε2M1σ
T∑

s=η

G(η, η)a(s)‖u‖

≥‖u‖.
Hence, ‖Fu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2. By the first part of

Theorem 1, F has a fixed point in K ∩ (Ω2 \ Ω1) such that
H1 � ‖u‖ � H2.
Sublinear case. f0 = ∞ and f∞ = 0. Since f0 = ∞, choose
H3 > 0 such that f(u) � ε3u for 0 < u � H3, where ε3 > 0
satisfies

ε3M1σ
T∑

s=η

G(η, η)a(s) � 1. (25)

Let
Ω3 = {u ∈ E : ‖u‖ < H3},

then for u ∈ K ∩ ∂Ω3, we get

(Fu)(η) ≥M1

T∑
s=η

G(η, η)a(s)f(u(s)) ≥ ε3M1

T∑
s=η

G(η, η)a(s)y(s)

≥ε3M1σ
T∑

s=η

G(η, η)a(s)‖u‖ ≥ ‖u‖.

Thus, ‖Fu‖ � ‖u‖, u ∈ K ∩ ∂Ω3.
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Now, since f∞ = 0, there exists Ĥ4 > 0 so that f(u) � ε4u
for u � Ĥ4, where ε4 > 0 satisfies

ε4M2M

T∑
s=η

a(s) � 1. (26)

Subcase 1. Suppose f is bounded, f(u) ≤ L for
all u ∈ [0,∞) for some L > 0. Let H4 =

max{2H3, LM2M
T∑

s=1

a(s)}.

Then for u ∈ K and ‖u‖ = H4, we get

(Fu)(η) ≤M2

T∑
s=1

G(t, t)a(s)f(u(s)) ≤ LM2M

T∑
s=1

a(s)

≤H4 = ‖u‖
Thus (Fu)(t) ≤ ‖u‖.

Subcase 2. Suppose f is unbounded, there exist H4 >

max{2H3,
̂H4

σ } such that f(u) ≤ f(H4) for all 0 < u ≤ H4.
Then for u ∈ K with ‖u‖ = H4 from (10) and (26), we have

(Fu)(t) ≤M2

T∑
s=1

G(t, t)a(s)f(u(s)) ≤ M2M

T∑
s=1

a(s)f(H4)

≤ε4M2M
T∑

s=1

a(s)H4 ≤ H4 = ‖u‖.

Thus in both cases, we may put Omega4 = {u ∈ E :
‖u‖ < H4}. Then

‖Fu‖ � ‖u‖, u ∈ K ∩ ∂Ω4.

By the second part of Theorem 1, A has a fixed point u in
K ∩ (Ω4 \Ω3), such that H3 � ‖u‖ � H4. This completes the
sublinear part of the theorem. Therefore, the problem (1)-(2)
has at least one positive solution. �

IV. SOME EXAMPLES

In this section, in order to illustrate our result, we
consider some examples.
Example 1 Consider the BVP

Δ2u(t− 1) + t2uk = 0, t ∈ N1,4, (27)

u(0) =
1

4
Δu(0), u(5) =

2

3

2∑
s=1

u(s). (28)

Set α = 2
3 , β = 1

4 , η = 2, T = 4, a(t) = t2, f(u) = uk.
We can show that

2(T + 1)− αη(η + 1)− 2β(αη − 1) =
40

6
> 0.

Case I : k ∈ (1,∞). In this case, f0 = 0, f∞ = ∞ and (i) of
theorem 2 holds. Then BVP (27)-(28) has at least one positive
solution.
Case II : k ∈ (0, 1). In this case, f0 = ∞, f∞ = 0 and (ii)
of theorem 2 holds. Then BVP (27)-(28) has at least one
positive solution.

Example 2 Consider the BVP

Δ2u(t− 1) + ette(
π sinu+ 2 cosu

u2
) = 0, t ∈ N1,4,

(29)

u(0) =
2

5
Δu(0), u(5) =

1

3

3∑
s=1

u(s), (30)

Set α = 1
3 , β = 2

5 , η = 3, T = 4, a(t) = ette, f(u) =
π sinu+2 cosu

u2 .
We can show that

Λ = 2(T + 1)− αη(η + 1)− 2β(αη − 1) = 6 > 0,

Through a simple calculation we can get f0 = ∞, f∞ = 0.
Thus, by (ii) of theorem 2, we can get BVP (29)-(30) has at
least one positive solution.
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