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Abstract—This paper presents a regression model for interval 

type-2 fuzzy sets based on the least squares estimation technique. 
Unknown coefficients are assumed to be triangular fuzzy numbers. 
The basic idea is to determine aggregation intervals for type-1 fuzzy 
sets, membership functions of whose are low membership function 
and upper membership function of interval type-2 fuzzy set. These 
aggregation intervals were called weighted intervals. Low and upper 
membership functions of input and output interval type-2 fuzzy sets 
for developed regression models are considered as piecewise linear 
functions. 

 
Keywords—Interval type-2 fuzzy sets, fuzzy regression, 

weighted interval. 

I. INTRODUCTION  
HE methods of fuzzy regression analysis have received a 
lot of developing in the past years [1]-[24]. Advantages 

and differences existing methods are detailed in the [14], [24].  
However, all these methods to the appearance of [24] have 

been limited by consideration of type-1 fuzzy sets (T1 FSs). 
This paper presents the first linear regression model for 
interval type-2 fuzzy sets. The development of such model 
has been quite logical and expected because the fuzzy 
regression analysis must provide a way to model the observed 
fuzzy data such as words models of whose may be interval 
type-2 fuzzy sets (IT2 FSs), proposed by L. Zadeh and 
developed by J. M. Mendel [25]. Evaluation of qualitative 
characteristics has always been a non-trivial task, since in 
most cases it is caused by involvement experts. Quite often, 
expert opinions are the only means of evaluations of 
qualitative characteristics because of the lack of reliable 
mathematical models, accurate statistical information and a 
number of other reasons. The problem of aggregation of 
information obtained from a group of experts is not new, but 
the relevance to solve it is not lost, because along with the 
development of new and more complex systems in different 
fields of human activity, more complex procedures for their 
expertise and responsibility of the experts for their solutions 
and approaches. It is necessary not only to obtain information 
from experts, but also to process it keeping unique individual 
experience and knowledge maximally.  

Methods of the theory of expert evaluation have begun to 
fail, since procedures of evaluation complicated considerably, 
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increased the cost of failure and accordingly responsibility of 
expert for evaluation individually as well as in cooperative 
decision making. IT2 FSs have enough degrees of freedom to 
save individual expert information and to obtain a group 
expert model. In order to include IT2 FSs into a nonlinear 
regression, a need for developing a new method exists. It is 
worth mentioning that if many nonlinear classical regression 
models can be reduced to linear models by means of 
corresponding replacements, nonlinear fuzzy regression 
models are more complicated to reduce. The matter is that, for 
example, while multiplying fuzzy numbers it is not always 
possible to get an analytical form for membership function of 
a fuzzy number which is a result out of the multiplication. The 
method of regression’s creation develops the idea presented in 
[24]. It allows determining aggregation intervals for T1 FSs, 
membership functions of whose are low membership function 
(LMF) and upper membership function (UMF) of IT2 FS. 
These aggregation intervals were called weighted intervals 
[26]. The developed method extends a group of initial data 
membership functions as well as a group of regression 
models. 

II. WEIGHTED INTERVALS FOR INTERVAL TYPE-2 FUZZY SETS 

Let us consider a IT2 FS A~  shown in Fig. 1.  
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Fig. 1 IT2 FS A~  with LMF A~μ  and UMF A~μ  

 
This IT2 FS is defined by LMF and UMF, which are 

denoted by A~μ
 and A~μ  respectively, 

( )L
r

L
l

LL aaaa ,,,  21A~ =μ
, 

( )U
r

U
l

UU
A aaaa ,,, 21~ =μ . The first two parameters in brackets 

are abscissas of the apexes of the trapezium upper bases that 
is a graph of the corresponding membership function, while 
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the last two parameters are the lengths of the left and right 
trapezium wings correspondingly. 

The definition of weighted point B  for a triangular number 
( )rl bbbB ,,~ =  was given in [10]: 
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According to this definition, we get weighted point of a 

triangular number, integrating the mid α -cuts with a weight 
function equal to α2 . Using this definition we can see that 
two normalized symmetrical triangular numbers with different 
fuzzy widths are converted into one crisp number. For 
example, let consider two triangular fuzzy numbers: 

( )2,2,2~
=A , ( )1,1,2~

=B . The weighted points for numbers 

A~ , B~  we shall designate accordingly as BA, , then: 
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While this may not present a problem to solve a number of 

practical tasks, however, for example, in decision-making 
problems and some other problems the necessity arises to find 
aggregative indexes that will possibly accumulate different 
bounds of input fuzzy numbers.  

That is why we propose to use the definition of weighted 
point for a triangular number in order to determine a weighted 
interval for a trapezoidal fuzzy number (as well as for a 
triangular number as a special case of a trapezoidal fuzzy 
number). It will allow keeping their informative properties. 

Let define the weighted set for the trapezoidal fuzzy 
number ( )rl aaaaA ,,~

,21≡  as the set of weighted points of all 

triangular numbers ( )rl bbbB ,,~
≡  that belong to the number 

A~ . 
Proposition 1 [27]. The weighted set for the trapezoidal 

fuzzy number ( )rl aaaaA ,,~
,21=  is an interval [ ]21, AA , such 

as laaA
6
1

11 −= , raaA
6
1

22 += . 

We have called the interval [ ]21, AA  the weighted interval 

for trapezoidal fuzzy number ( )RL aaaaA ,,~
,21= . 

Let consider two triangular fuzzy numbers: ( )2,2,2~
=A , 

( )1,1,2~
=B  again and define the weighted intervals [ ]21, AA , 

[ ]21, BB  for numbers A~ , B~ . 
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It can be observed that the weighted points of A~  and B~ are 

the same while the weighted intervals for these fuzzy numbers 
are different. The greater the fuzzy widths, the greater the 
weighted interval is. 

The weighted intervals are suggested to be used in 
situations where it is necessary to accumulate more 
information about fuzzy numbers than aggregative point crisp 
indexes contain when there is no requirement to get only 
aggregative numbers. 

Proposition 2 [27]. The weighted interval for number BA ~~
+  

can be obtained as [ ]2211 , BABA ++ , where [ ] [ ]2121 ,,, BBAA  are 

weighted intervals for trapezoidal numbers A~ , B~ . 
Let us consider a nonnegative ( )rl aaaaA ,,~

,21=  and a 

triangular number ( )rl bbba ,,~ ≡ . 
Proposition 3 [27]. The boundaries of weighted interval 

[ ]2~~
1~~ , AaAa θθ  of product of fuzzy numbers a~  and A~  look like  
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Proposition 4 [27]. The boundaries of weighted interval 

[ ]2~~
1~~ 22 , AaAa θθ  of product of fuzzy numbers a~  and 2~A  look like  
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Let us consider a nonnegative number ( )rl bbbbB ,,~
,21= . 

Proposition 5 [27]. The boundaries of weighted interval 
[ ]2 ~~~

1 ~~~ , BAaBAa θθ  of product of fuzzy numbers a~ , BA ~,~  look like 
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Definition 1. We shall call weighted intervals of a IT2 FS 

A~  the weighted intervals of LMF and UMF, which define 
IT2 FS A~ . 

For example, weighted intervals [ ] [ ]UULL AAAA 2121 ,,,  for IT2 

FS A~ , defined by LMF ( )L
r

L
l

LL aaaa ,,,  21A~ =μ  and UMF 

( )U
r

U
l

UU
A aaaa ,,, 21~ =μ , look like: 
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Let us define an affinity measure for two IT2 FSs BA ~,~  

with weighed intervals [ ] [ ]UULL AAAA 2121 ,,, , [ ] [ ]UULL BBBB 2121 ,,,  
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III. PROBLEM FORMULATION AND SOLUTION 

Let iY~ ni ,1=  are output IT2 FSs, defined by LMFs 
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The regression model relates Y~  (with meanings 
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where ( )k

R
k
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k
k bbba ,,~ ≡ , ( )

2
3,0 +

=
mmk  are unknown coefficients 

of a regression model, which are defined as triangular 
numbers (not necessarily symmetrical).  

The method of regression’s creation is based on the 
transformation of the LMFs and UMFs of initial and model 
output IT2 FSs into weighted intervals. 

Let us determine the weighed intervals [ ]L
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Let us determine the weighed intervals [ ]L
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ni ,1=  data, using propositions 1-5.  
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where ( ).
2

3,0 +
=

mmk  

Detailed presentation of these intervals is presented in [23]. 
LMFs and UMFs of model output data will not be 

trapezoidal fuzzy numbers. While multiplying fuzzy numbers 
it is not always possible to get an analytical form for 
membership function of a fuzzy number which is a result out 
of the multiplication. But we can always determine model 
output data with the help of α -cuts. For example if 

( )rl bbba ,,~ ≡  is a negative fuzzy number ( )0<+ rbb , 

( )rl aaaaA ,,~
,21=  is a nonnegative number ( )01 ≥− laa  then 

according to multiplication operation for fuzzy numbers, the 
α -cut of Aa ~~  looks like [ ]21 , αα CC  , where 
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If ( )rl bbba ,,~ ≡  is a nonnegative fuzzy number ( )0≥− lbb  
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then according to multiplication operation for fuzzy numbers, 
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Let us consider a functional 
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which characterizes an affinity measure between initial and 
model output data.  

The optimization problem is set as follows: 
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problem of identifying them with initial collection of words 
pkYk ,1, = , that formalized with the help of IT2 FSs 

pkYk ,1,
~~

=  defined by LMFs ( ),,,, 21~~
kL
r

kL
l

kLkL
Y

yyyy
k

=μ pk ,1=  

and UMFs ( ),,,, 21~~
kU
r

kU
l

kUkU
Y

yyyy
k

=μ pk ,1=  appears.  
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The weighted intervals for LMF and UMF of model iŶ  , 

ni ,1=  are designated by [ ]iLiL CC 21 , , [ ] niCC iLiL ,1,, 21 =  
accordingly. The weighted intervals for LMF and UMF of 

pkYk ,1,
~~

=  are designated by [ ]iLiL DD 21 , , [ ] pkDD iLiL ,1,, 21 =  
accordingly.  

Let  
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The model iŶ is identified to sY , if 
 

pkYYfYYf kiksi ,1,
~~,ˆmin

~~,ˆ
22

=⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛  . 

IV. CONCLUSION 
A method for a multiple fuzzy nonlinear regression was 

developed in this paper. The input and output data of the 
regression model are interval type-2 fuzzy sets. The basic idea 
of this paper is to determine aggregation intervals for 
trapezoidal fuzzy numbers, membership functions of whose 
are low membership function and upper membership function 
of interval type-2 fuzzy sets, to determine an affinity measure 
for two interval type-2 fuzzy sets based on these intervals and 
to use the least squares estimation technique. The proposed 
method extends a group of initial data membership functions 
(the regression model can be applied not only to type-1 fuzzy 
sets, but also to interval type-2 fuzzy sets) as well as a group 
of regression models. 
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