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Abstract—Let )(mmax

Gξ  denote the maximum number of 

edges in a subgraph of graph G  induced by m  nodes. The n
-dimensional augmented cube, denoted as nAQ , a variation of the 
hypercube, possesses some properties superior to those of the 
hypercube. We study the cases when G  is the augmented cube nAQ . 

In this paper, we show that ip
i

r
inAQ

ipmmax )2
2
12(=)( 0= −+∑ξ , 

where rppp >>> 10 "  are nonnegative integers defined by 
ipr

im 2= 0=∑  and 2≥m . We then apply this formula to find the 

bisection width of nAQ . 
 

Keywords—Interconnection network, Augmented cube, Induced 
subgraph, Bisection width. 

I. INTRODUCTION 

HEtopology of an interconnection network is conveniently 
represented by an undirected simple graph ),(= EVG , 

where )(GV  and )(GE  is the vertex set and the edge set of G , 
respectively. For graph terminology and notation not defined 
here we refer the reader to [8]. There are a lot of 
interconnection network topologies proposed in literature [4]. 
Among these topologies, the n -dimensional hypercube, 
denoted by nQ , is a popular one. Many variants of the 
hypercube have been proposed. The augmented cube, proposed 
by Choudum and Sunitha [3], is one of such variations. An n
-dimensional augmented cube nAQ  can be formed as an 
extension of nQ  by adding some links. For any positive integer 
n , nAQ  is a vertex transitive, 1)(2 −n -regular, and 1)(2 −n

-connected graph with n2  vertices. nAQ  retains all favorable 
properties of nQ  since nn AQQ ⊂ . Moreover, nAQ  possesses 
some embedding properties that nQ  does not. Previous works 
relating to the augmented cube can be found in [1], [2], [5], [6], 
[7], [9]. 

Let )(mmax
Gξ  denote the maximum number of edges in a 

subgraph of graph G  induced by m  nodes. Determining 
)(mmax

Gξ  for typical graph G  not only is interesting in its 
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own right, but the result has applications in the evaluation of 
bandwidth and fault tolerant of G  [11]. Abdel-Ghaffar [10] 
solved this problem for hypercube and Yang et al. [12] solved it 
for recursive circulant graph ,4)(2nG  which is one of various 
of hypercubes. In this paper, we show that 

ip
i

r
inAQ

ipmmax )2
2
12(=)( 0= −+∑ξ , where rppp >>> 10 "  

are nonnegative integers defined by ipr
im 2= 0=∑  and 2≥m . 

We then apply this formula to find the bisection width of nAQ . 
The rest of this paper is organized as follows: In Section II, 

provides formal definition of nAQ . A useful function is given 
and study its properties in Section III. By exploiting these 

properties, we show ip
i

r
inAQ

ipmmax )2
2
12(=)( 0= −+∑ξ  in 

Section IV. Finally, the formula is applied to determine the 
bisection width of nAQ  in Section V. 

II. PRELIMINARIES 
Let ),(= EVG  be a graph, and )(GV  and )(GE  denote 

vertex set and edge set of graph G , respectively. For 
)(GVU ⊆ , the subgraph of G  induced by U , denoted by 

][UG , is a graph with vertex set U  and all the edges of G  
with both vertices in U . Anm-induced subgraph of a graph is 
one that is induced by m  vertices. A maximum 
m-inducedsubgraph of a graph is one that has the maximum 
number of edges. Let )(mmax

Gξ  denote the maximum number 

of edges in an m -induced subgraph of graph G . Let )(Uξ  
denote the number of edges of ][UG . For a pair of disjoint 
vertex subsets 1U  and 2U  of graph G , let ),( 21 UUξ  denote 
the number of edges joining 1U  and 2U . 

Let 1≥n  be an integer. The graph of the n -dimensional 
augmented cube [3], denoted by nAQ  has n2  vertices, each 
labeled by an n -bit binary string 

{0,1}}|{=)( 21 ∈inn uuuuAQV … . 1AQ  is the graph 2K  with 
vertex set {0,1} . For 2≥n , nAQ  can be recursively 

constructed by two copies of 1−nAQ , denoted by 0
1−nAQ  and 

1
1−nAQ  and by adding n2  edge between 0

1−nAQ  and 1
1−nAQ  as 

follows: 
Let 0=|){(0=)( 32

0
1 inn uuuuAQV …−  or 1 for }2 ni ≤≤  

and 0=|){(1=)( 32
1

1 inn uvvvAQV …−  or 1 for }2 ni ≤≤ . A 

vertex )(0= 32 nuuuu …  of 
0

1−nAQ  is joined to a vertex 
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)(1= 32 nvvvv …  of 
1

1−nAQ  if and only if either )(i ii vu =  for 
ni ≤≤2 ; in this case, ),( vu  is called a hypercube edge, or )(ii

ii vu =  for ni ≤≤2 ; in this case, ),( vu  is called a 
complement edge. 

 

 
Fig.1 The augmented cubes: 1AQ , 2AQ , and 3AQ  

 
The augmented cubes 1AQ , 2AQ , and 3AQ  are illustrated 

in Fig. 1. It is proved in [3] that nAQ  is a vertex transitive, 

1)(2 −n -regular, and 1)(2 −n -connected graph with n2  
vertices for any positive integer n . 

Any positive integer m  can be uniquely represented by 
ipr

im 2= 0=∑ , where 0>>> 10 ≥rppp " . We define a 
useful function 

 

⎪⎩

⎪
⎨
⎧

≥−+

≤

∑ 2:)2
2
12(

1:0
=)(

0=
mip
m

mf ip
i

r

i  
 
As an example, for 247 222=148= ++m , we have 

942=)2
2
14(2)2

2
12(4)2

2
10(7=(148) 247 −++−++−+f  

Theorem 1 For any 1≥n  and nm 2<0 ≤ , we have 
)(=)( mfmmax

nAQξ .  

We drive several properties of the function )(mf  which are 
used to prove Theorem 1 in following sections and also give an 
explicit set U  of vertices such that )(=)( mgUξ . 

III. PROPERTIES OF )(mf  

For a positive integer m , we define ⎦⎣ mlogml 2=)(  and 
)(2= ml' mm − .Obviously,  2<2 1)()( +≤ mlml m and 

2
<0 mm'≤ . 

Proposition 1 Let m  be a positive. Then, '')( 2)()2()( mmffmf ml ++=  

Proof. We may write rpppm 222= 10 +++ "  for some 
integer 0≥r  and 0>>> 10 ≥rppp " . Clearly, 0=)( pml . 
From the definition of )(mf , ip

i
r
i

ml ipmlmf )2
2
12(1)2)((2=)( 1=

1)( −++− ∑− . 

Since rppp'm 222= 21 +++ " , we also have 
ip

i
r
i

' ipmf ]2
2
11)2([=)( 1= −−+∑ .  

We conclude from the above that 

''mlipr

i
'ml mmffmfmlmf 2)()(2=22)(1)2)((2=)( )(

1=
1)( ++×++− ∑−

 because 1)()( 1)2)((2=)(2 −− mlml mlf . 
Proposition 2 For any positive integers  1m and 2m , we 

have }.,{2)()()( 212121 mmminmfmfmmf ++≥+  
Proof. Clearly equality holds for 1=1m  or 1=2m . The 

proof is by induction on 21 mm + . Without loss of generality, 
we may assume that 221 ≥≥ mm . In particular, we want to 
prove that 22121 2)()()( mmfmfmmf ++≥+ , where the 
induction hypothesis implies that  

 

 },{2)()()( 212121 mmminmfmfmmf ''' ++≥+  (1) 
  

},{2)()()( 212121
'''''' mmminmfmfmmf ++≥+   (2)  

 

Notice that 2)1(
1211

)1( 2<22 +≤+≤≤ mlml mmmm  and, in 
particular, )( 21 mml +  equals either )( 1ml  or 1)( 1 +ml . We 
consider all possible cases: 

Case 1: )(=)( 121 mlmml +  
In this case, 

21
)1(

21
)21(

2121 =2=2=)( mmmmmmmm 'mlmml' +−+−++ + . Proposition 

1 gives  2)(1)2)((2=)( 11
1)1(

11
''ml mmfmlmf ++− − and 

)2()(1)2)((2=

)2())((1)2)((2=)(

2121
1)1(

1

2121
1)21(

2121

mmmmfml

mmmmfmmlmmf
''ml

''mml

++++−

++++−++
−

−+  

Hence,

221

22121

2211121

2)()(
2},{2)()(

2)()()(=)(

mmfmf
mmmminmfmf

mmmfmfmfmmf
'

''

++≥
+++≥

+++−+
, where 

the first inequality follows from (1). 
Case 2: 1)(=)( 121 ++ mlmml  and )(=)( 21 mlml  
In this case, 

1)1(
21

)21(
2121 2=2)(=)( ++ −+−++ mlmml' mmmmmm

''mlml mmmm 21
)2(

2
)1(

1 =22= +−+− . Proposition 1 gives 
''ml mmfmlmf 11

1)1(
11 2)(1)2)((2=)( ++− − , ''ml mmfmlmf 22

1)2(
22 2)(1)2)((2=)( ++− −

and 

.22)(1)2)((2=

)2())((1)2)((2=)(

2121
)1(

1

2121
1)21(

2121

''''ml

'
'mml

mmmmfml

mmmmfmmlmmf

+++++

++++−++ −+  

Since )(=)( 21 mlml  and 221 ≥≥ mm  implies 021 ≥≥ '' mm , 
we have 

2212
1)1(

21

2121
1)1(

2121

2)()(=22)()(

)()()(2)()(=)(

mmfmfmmfmf

mfmfmmfmfmfmmf
'ml

''''ml

+++++≥

−−+++++
+

+ , 

where the inequality follows from (2). 
Case 3: 1)(=)( 121 ++ mlmml  and )(>)( 21 mlml  

In this case, 
1)1(

21
)21(

2121 2=2)(=)( ++ −+−++ mlmml' mmmmmm
)1(

21
)1(

2
)1(

1 2=22= ml'mlml mmmm −+−+− . Furthermore, as 
)1(1)1(1)2(1)1(

21
)21(1)1( 2222<2=2 mlmlmlmlmmlml mm +≤++≤ +++++

, we get 
1)1()1(

21
)1( 2<22 +−+≤ mlmlml mm . 
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 Since 
)1(

2121 2= ml' mmmm −++ , we deduce that 
)(=)( 121 mlmml ' +  and 

)1(
21

)21(
2121 2=2)(=)( ml'm'ml''' mmmmmm −+−++ +

. 
Proposition 1 gives 

''ml mmfmlmf 11
1)1(

11 2)(1)2)((2=)( ++− −

, 

1)1(
21

)1(
21

)1(
1

2121
1)21(

2121

222)2(1)2)((2=

)2())((1)2)((2=)(
+

−+

−++−+++

++++−++
ml'ml'ml

''mml

mmmmfml

mmmmfmmlmmf , 

and 

.222)2(1)2)((2=

)2())((1)2)((2=)(
1)1(

21
)1(

21
1)1(

1

2121
1)21(

2121
+−

−+

−++−++−

++++−++
ml'ml'ml

''''m'ml''

mmmmfml

mmmmfmmlmmf

The above expressions for )( 1mf , )( 21 mmf + , and  )( 21 mmf ' + yield 

)1(
12

)1(
21

1)1(
12121

1)1(
11211

1)1(
12121

2,{22)()(=

22},{2)()(

22)()()(=

3)2)((2)(=)(

ml'ml

ml''

ml'''

ml'

mmminmfmf

mmmminmfmf

mmfmmfmf

mlmmfmmf

+−++

+−++≥

+−−++

++++

+

+

−

, 

where the inequality follows from (1). Since 
 2</2< )1(

11
ml' mm and 

)1(1)2(
2 22< mlmlm ≤+

, we have 

22
)1()1(

12
)1( =},{2}2,{2 mmminmmmin mlml'ml ≥+− . 

Therefore, },{2)()()( 212121 mmminmfmfmmf ++≥+ . 

IV. PROOF OF THEOREM 1 
A partition of a set S  is a collection of disjoint subsets of S  

whose union equals S . Then the following lemma is 
obviously. 

Lemma 1 [12] Let U  be a vertex subset of graph G . Let 
},,,{ 10 kUUU …  be a partition of U . Then 

),()(=)( <00= jikjii
k
i UUUU ξξξ ∑∑ ≤≤

+ . 

Let U  be a set of vertices on the nAQ , let 

)(= 1
)( a

n
a AQVUU −∩  where 0=a  or 1. We have the 

following observation. 
Lemma 2 For a set U  of vertices on nAQ , 1>n , we have 

|}||,{|2)()()( (1)(0)(1)(0) UUminUUU ++≤ ξξξ .  
Proof. Since },{ (1)(0) UU  is a partition of U , by Lemma 1, 

|),(|)()(=)( (1)(0)(1)(0) UUUUU ξξξξ ++ . Without loss of 

generality, we may assume that |||| (1)(0) UU ≤ . One can 

observe that (0)U  and (1)U  are vertex subsets of  0
1−nAQ and 

1
1−nAQ  respectively. The proof is divided into two parts as 

follows. 
Case 1: 0|=| (0)U .  

This implies (1)= UU . It is obvious that 0=)( (0)Uξ  and 
0=|}||,{| (1)(0) UUmin . Thus |}||,{|2)()()( (1)(0)(1)(0) UUminUUU ++≤ ξξξ . 

Case 2: 0|| (0) ≠U .  

By definition, every vertex of 0
1−nAQ  connects to exactly two 

vertices of 1
1−nAQ . Hence, for any vertex (0)Uu ∈ , at most two 

vertices in (1)U  are adjacent to u . Therefore, ||2),( (0)(1)(0) UUU ≤ξ . 
As a result, |}||,{|2)()()( (1)(0)(1)(0) UUminUUU ++≤ ξξξ . 

Lemma 3For any integer 1≥n  and nm 20 ≤≤ , we have 
)()( mfmmax

nAQ
≤ξ . 

Proof. It suffices to show that )()( mfU ≤ξ  for every set 
)( nAQVU ∈ . The proof is induction on n . It is obviously true 

for 1,2=n . Suppose the claim is true for kn = . Let U  be an 

arbitrary set of m  vertices in nAQ . Thus },{ (1)(0) UU  is a 

partition of U , and )( 0
1

(0)
−⊆ nAQVU  and )( 1

1
(1)

−⊆ nAQVU . 
By Lemma 2, the induction hypothesis, and Proposition 2, we 
have 

).(=
|)||(|

|}||,{|2|)(||)(|
|}||,{|2)()()(

(1)(0)

(1)(0)(1)(0)

(1)(0)(1)(0)

mf
UUf

UUminUfUf
UUminUUU

+≤
++≤

++≤ ξξξ

 

Thus the lemma is proved. 
Next, we give for any integer 1≥n  and nm 20 ≤≤ , a set, 

denoted by nmU , , of m  vertices on the nAQ  for which 

)(=)( , mfU nmξ . The set nmU ,  is defined by 

}<2|)(){(= 1
1=21, msAQVsssU i

i
n
innnm

−∑∈" , i.e., nmU ,  
consists of all vectors that are binary expansions of nonnegative 
integers less than m . 

Lemma 4For any integer 1≥n  and nm 20 ≤≤ , we have 
)(=)( , mfU nmξ .  

Proof. The proof is induction on n . Clearly the statement 
holds for 1=n . Suppose the claim is true for 1−≤ kn . Now 
we consider the following three cases when kn = . 

Case 1: 120 −≤≤ km  
In this case, 1,

(0)
, = −kmkm UU , ||=|=| (0)

,, kmkm UUm , and (1)
,kmU  is 

empty. By Lemma 2, we have )(=)(=)( 1,
(0)

,, −kmkmkm UUU ξξξ . 

By induction hypothesis, )(=)( 1, mfU km −ξ ; this implies 

)(=)( , mfU kmξ . 
Case 2: kk m 2<2 1 ≤−  
In this case, )(= 0

1
(0)

, −kkm AQVU  and '
km mU |=| (1)

,  where 
12= −− k' mm . Thus for any vertex (0)

,kmUu ∈ , there are exactly 

two vertices in (1)
,kmU  adjacent to u . This implies 

'
kmkmkm mUUU 2|=|2=),( (1)

,
(1)

,
(0)

,ξ .  
Since },{ (1)

,
(0)

, kmkm UU  is a partition of kmU , , by Lemma 1, 

),()()(=)( (1)
,

(0)
,

(1)
,

(0)
,, kmkmkmkmkm UUUUU ξξξξ ++ . By the induction 

hypothesis, we have 
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.2)()(2=
),(|)(||)(|=

),()()(=)(

1

(1)
,

(0)
,

(1)
,

(0)
,

(1)
,

(0)
,

(1)
,

(0)
,,

''k
kmkmkmkm

kmkmkmkmkm

mmff
UUUfUf

UUUUU

++
++

++

−

ξ
ξξξξ

 

Therefore, by Proposition 1, )(=)( , mfU kmξ  because 

1=)( −kml . 

Case 3: km 2=  
In this case, kmU ,  contain all the vertices in the kAQ  and 

1
, 1)2(2=)( −− k
km kUξ . By definition of )(mf , we have 

11)2(2=)2
2
1(=)(2 −−− kkk kkf . Hence, )(=)( , mfU kmξ . 

From Lemma 3 and Lemma 4, we have 
)(=)(=)( , mfUmmax nm

nAQ
ξξ . Thus Theorem 1 is proved. 

V. APPLICATION TO BISECTION WIDTH 
The bisection width of graph G , denoted by )(Gbisection , 

is the minimum cardinality of an edge cut of G  that splits G  
into two equally-size parts. The arm of this section is to 
determine the bisection width of nAQ . 

Lemma 5For a set U  of vertices of n -regular graph G , 
we have )(2||=))(,( UUnUGVU ξξ −×− . 

Theorem 2 For any integer n , we have 
n

nAQbisection 2=)(  
Proof. The proof is obviously true for 1,2=n . Suppose 

3≥n . For any set U  of 12 −n  vertices of nAQ , by Lemma 5 
and Theorem 1 that 

.2=
3)22(221)(2=

)(2221)(2
)(221)(2=))(,(

21

11

1

n

nn

nn

n
n

nn
fn
UnUAQVU

−−

−−

−

−−×−
×−×−≥

−×−− ξξ

 

Thus, n
nAQbisection 2)( ≥ . On the other hand, let 

)(= 0
1−nAQVU . Then 12|=| −nU  and n

n UAQVU 2=))(,( −ξ . 

Therefore, we have 12=)( −n
nAQbisection . 
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