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Maximum Induced Subgraph of an Augmented Cube

Meng-Jou Chien, Jheng-Cheng Chen, Chang-Hsiung Tsai

Abstract—Let maxée(m) denote the maximum number of

edges in a subgraph of graph G induced by m nodes. The n
-dimensional augmented cube, denoted as AQ,, a variation of the
hypercube, possesses some properties superior to those of the
hypercube. We study the cases when G is the augmented cube AQ, .

1,
In this paper, we show that max tq, (m) = ZLO( p; +2i —5)2 PP

where p, > p, >---> p, are nonnegative integers defined by

m= Z::OZpi and m>2. We then apply this formula to find the
bisection width of AQ, .

Keywords—Interconnection network, Augmented cube, Induced
subgraph, Bisection width.

I. INTRODUCTION
HEtopology of an interconnection network is conveniently
represented by an undirected simple graph G =(V,E),
where V(G) and E(G) isthe vertex set and the edge setof G,

respectively. For graph terminology and notation not defined
here we refer the reader to [8]. There are a lot of
interconnection network topologies proposed in literature [4].
Among these topologies, the n -dimensional hypercube,
denoted by Q,, is a popular one. Many variants of the

hypercube have been proposed. The augmented cube, proposed
by Choudum and Sunitha [3], is one of such variations. An n
-dimensional augmented cube AQ, can be formed as an

extension of Q, by adding some links. For any positive integer
n, AQ, is a vertex transitive, (2n—1) -regular, and (2n-1)
-connected graph with 2" vertices. AQ, retains all favorable
properties of Q, since Q, — AQ,. Moreover, AQ, possesses
some embedding properties that Q, does not. Previous works

relating to the augmented cube can be found in [1], [2], [5], [6],
[71, [9].

Let max,_ (m) denote the maximum number of edges in a

subgraph of graph G induced by m nodes. Determining
maxge(m) for typical graph G not only is interesting in its
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own right, but the result has applications in the evaluation of
bandwidth and fault tolerant of G [11]. Abdel-Ghaffar [10]
solved this problem for hypercube and Yang et al. [12] solved it

for recursive circulant graph G(2",4) which is one of various
of hypercubes. In this paper, we show that

r R
max ¢aqQ, (m) = Zizo(pi +2i _E)zpl , Where Po> P> > P,

are nonnegative integers defined by m = zirzoz"i and m>2.

We then apply this formula to find the bisection width of AQ, .

The rest of this paper is organized as follows: In Section II,
provides formal definition of AQ, . A useful function is given

and study its properties in Section Ill. By exploiting these
properties, we show max., (m):zirzo(pi+2i—%)2"i in
n

Section IV. Finally, the formula is applied to determine the
bisection width of AQ, in Section V.

I1. PRELIMINARIES

Let G=(V,E) be a graph, and V(G) and E(G) denote
vertex set and edge set of graph G , respectively. For
U cV(G), the subgraph of G induced by U , denoted by
G[U], is a graph with vertex set U and all the edges of G
with both vertices in U . Anm-induced subgraph of a graph is
one that is induced by m wvertices. A maximum
m-inducedsubgraph of a graph is one that has the maximum
number of edges. Let max . (m) denote the maximum number
of edges in an m-induced subgraph of graph G. Let £(U)
denote the number of edges of G[U]. For a pair of disjoint
vertex subsets U, and U, of graph G, let £(U,,U,) denote
the number of edges joining U, and U, .

Let n>1 be an integer. The graph of the n-dimensional
augmented cube [3], denoted by AQ, has 2" vertices, each
labeled by an n -bit binary string
V(AQ,) ={uu,...u, |u, €{0,1}}. AQ, is the graph K, with
vertex set {0,1} . For n>2 , AQ, can be recursively
constructed by two copies of AQ, ,, denoted by AQ?, and
AQ}, and by adding 2" edge between AQ?Y, and AQ:, as
follows:

Let V(AQY,)={(0u,u,...u,)|u; =0 or 1 for 2<i<n}

and V(AQL,) ={(v,v,...v,)|u, =0 or 1 for 251<n} A

u=(0u,u,...u,)

0
vertex of AQns is joined to a vertex
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— 1 . _
V= (WoVs-- Vo) of AQvt i ang only if either () Ui =Vi gor
2<i <N jnthis case, ("Y) is called a hypercube edge, or (")
u =V, for 2<i<n .
complement edge.

in this case, (u,v) is called a
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1 ol il 0071 011 101 111
AQ, AQ, A0

Fig.1 The augmented cubes: AQ,, AQ,,and AQ,

The augmented cubes AQ,, AQ,, and AQ, are illustrated
in Fig. 1. It is proved in [3] that AQ, is a vertex transitive,

(2n-1) -regular, and (2n-1) -connected graph with 2"
vertices for any positive integer n.
Any positive integer m can be uniquely represented by

m=3" 2", where p,>p, >--->p 20 . We define a
useful function

0 m<
f(m) = Z(pi+2i—%)2pi mx>2
i=0

As an example, for m=148=2"+2*+2% , we have
f (148) = (7+0—%)27 +(4+2—%)24 +(2+4—%)22 =042

Theorem 1 For any n>1 and 0<m<2", we have
maxs,AQn (m)=f(m).

We drive several properties of the function f(m) which are

used to prove Theorem 1 in following sections and also give an
explicit set U of vertices such that £(U) = g(m).

I1l. PROPERTIES OF f(m)
For a positive integer M, we define I(m) =[log,m] and
m =m-2'" opyiousty, 2™ <M<2'™" ang oM.
- 2
Proposition 1 Let m be a positive. Then, f(m=f@®)+f m)-+2m

Proof. We may write m=2" 42" +4+2" for some
integer F20 and p, > p,>--->p, 20. Clearly, I(m) = p,.

From the definition of f(m), f(m) = (20(m)-1)2'™* +Z.r:1( P +2i —%)Zpi .

Since M =27 +272 442" e also have
f(m)= 3 [p, +26-1)- 212"
We conclude from the above that

f(m)=(21(Mm)-1)2"™* + f(m)+> " 2x2% = £(2"™)+ f(m')+2m
because f(2'™) = (2I(m)-1)2'™*,

Proposition 2 For any positive integers m, and m,, we
have f(m,+m,)> f(m))+ f(m,)+2min{m;, m,}.

Proof. Clearly equality holds for m;, =1 or m, =1. The
proof is by induction on m, +m,. Without loss of generality,
we may assume that m; >m, > 2. In particular, we want to
prove that f(m,+m,)> f(m)+ f(m,)+2m, , where the
induction hypothesis implies that

f(m,+m,)> f(m)+ f(m,)+2min{m;,m,} (1)
f(m +m,)> f(m)+ f(m,)+2min{m,m,} (2

Notice that 2'™ <m, <m +m, <2m, <2'™"? and, in
particular, I(m,+m,) equals either I(m;) or I(m)+1. We
consider all possible cases:

Case 1:1(m, +m,) =1(m,)

In this case,
(m+m,) =m, +m, —2"™™ =m 1m, —2'™ =m +m,. Proposition
f(m,) = (21(m,)-1)2"™™" + f(m,)+2m,  and
f(m, +m,) = @I(m, +m,) —1)2" ™" 4 £ ((m, +m,))+2(m, +m,)

= @I(m,) -1)2"™ & f(m, +m,) +2(m, +m,)

1 gives

Hence,
f(m,+m,)=f(m)~-f(m)+ f(m +m,)+2m,
> f(m,)+ f(m,)+2min{m;,m,}+2m, » Where
> f(m)+ f(m,)+2m,
the first inequality follows from (1).
Case 2:1(m, +m,) =1(m,)+1 and I(m,) =1(m,)

In this case,
(my+m,) = (m, +m,)— 2" = m, 1 m, 20"
=m -2 4m, - 2" =m +m, Proposition 1  gives

f(m) = 2I(m) -1)2' ™ 4 f(my)+2m, » f(m,) = (2I(m,)-1)2"" "+ £ (m)) + 2m),
and ¢ (m, +m,) = (20(m, +m,)~1)2'™ " £ (m, +m,))+2(m, +m,)
= 1(m) +1)2'™ 4 £ (] +m)) + 2m; + 2m.
Since I(m,) =1(m,) and m, >m, >2 implies m, >m, >0,
we have

1(my)+1

f(m+m,) = f(m)+ f(my)+27 + f(m, +m,)— f(m) - f(m,)

> f(m)+ f(my)+2' ™"y 2m, = f(m)+ f(my)+2m,
where the inequality follows from (2).
Case 3:1(m, +m,) =1(m,)+1 and I(m;) >I(m,)

- H(my+my) _ 1(my)+1
In this case, (M +m,) =(m, +m,)-2 ") =m o 4m, -2

ol Lol _ olmy)
=m -2 4m, =270 =m 4+ m, —25  Eyrthermore,  as

olm)+1 _ Hl(mymy) m, +m, < I+ | Hlmp)+l o ol(m)+d | 5l(my)

I(m1)< _ 1(my) < 1(my)+1
,Weget2 <m +m,-2 2 .
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A . _ PUGH)
Since  Mitmy=m+m, -2 ., we deduce that

I(m; +m,) =1(m,) and
(m,+m,) =(m, +m,)— 2mima) = m, +m, —2'™
Proposition 1 I gives
f(my) = @1(m;) =1)2'™" + £ (m;) + 2m, ’
f(m, +m,) = I(m, +m,)-1)2'"" 4 £ (m, +m,) ) +2(m, +m,)

=@21(m,) +1)2'™ + f(m, +m, —2'™ )+ 2m +2m, - 2'™*

)

and
F(m+m,) = @I, +m,)~1)2" ™™ 4 f (4 m,) )+ 2(m +m,)

= (21(m,) —1)2" ™ 4 £ (m) +m, —2'™) 4+ 2m; +2m, — 2™,

The above expressions for fM), fM+m) ang FM+M,) yirg
f (m:l + mz) =f (ml + mz) + (2|(m1) " 3)2I(m1)—1

f(m)+ f(m +m,)— f(m,)-2m, +2'™" ,
I(my)+1

v

f(m,)+ f(m,)+2min{m,, m,}-2m, + 2
I(my)

f(m)+ f(m,)+2min{2"™ m, —m + 2
where  the inequality follows from (1). Since

mo<m/2<2™ om, <2/ Ml e

min{2'™ m, —m; +2'™}>min2'™ m,}=m,

Therefore, | (Mi+Mz) = f(my)+f(m,)+2min{m,,m,}

IV. PROOF OF THEOREM 1

A partition of a set S is a collection of disjoint subsets of S
whose union equals S . Then the following lemma is
obviously.

Lemma 1 [12] Let U be a vertex subset of graph G . Let
{U,.U,....u} be a partition of U . Then
cU) = Z:(:o‘f(ui)+205i<jgk§(ui’u i)

Let U be a set of vertices on the AQ, , let
U®=UnV(AQ?,) where a=0 or 1. We have the

following observation.
Lemma 2 For a set U of vertices on AQ,, n>1, we have

SU) <UD +&U D) +2min{lu@ [ JUD [},

Proof. Since {U @, U™} is a partition of U , by Lemma 1,
EU) = EUO)+EUD)+|£UO,UD)| . Without loss of
generality, we may assume that |[U@|U®|. One can
observe that U® and U™ are vertex subsets of AQY, and

AQ:_, respectively. The proof is divided into two parts as
follows.

Case 1:|U@ |=0.

This implies U =U® . It is obvious that £U®)=0 and
minU@ JU® [}=0. Thus £U) <&U®)+£U®)+2minflu® |,JUP [}

Case 2:|U@ |=0.

By definition, every vertex of AQ? , connects to exactly two
vertices of AQ!_,. Hence, for any vertex u U@, at most two
vertices in U are adjacent to u . Therefore, u© u®)<2u®|.
As aresult, su)<eu©)+£U®)+2mingu®U® -

Lemma 3For any integer n>1 and 0<m<2", we have
max tnq, (m)< f(m).

Proof. It suffices to show that £(U) < f(m) for every set
U eV (AQ,) . The proof is induction on n . It is obviously true
for n=1,2. Suppose the claim is true for n=k . Let U be an

arbitrary set of m vertices in AQ,. Thus {U?,U%} is a

partition of U , and U® <V (AQY,) and U™ cV(AQL,).

By Lemma 2, the induction hypothesis, and Proposition 2, we
have

£U) <EU@)+EUD)+2mindu@ U@ [}
<fQUOD+FUOD+2min{u@ UD 1}
<fQU@ I+ v
= f(m).
Thus the lemma is proved.
Next, we give for any integer n>1and 0<m<2", a set,
denoted by U, ., of m vertices on the AQ, for which

éU,,)=f(m). Theset U

U, ={(s5,--s,)eV(AQ) | Y s2 " <m}, ie, U,
consists of all vectors that are binary expansions of nonnegative
integers less than m .

Lemma 4For any integer n>1 and 0<m<2", we have
cU,,)= f(m).
Proof. The proof is induction on n. Clearly the statement

holds for n =1. Suppose the claim is true for n <k -1. Now
we consider the following three cases when n=k .

Case 1:0<m< 2!

In this case, U =U .., m=|U_, [5[UQ |, and U} is
empty. By Lemma 2, we have £(U,,,) = EU0) =¢U,,).
By induction hypothesis, £(U,,,,) = f(m) ; this implies
U, )= f(m).

Case 2: 2"t <m< 2"

In this case, UY, =V(AQ},) and [UY, |=m where

is defined by

n

m =m-—2"". Thus for any vertex u U © , there are exactly

mk !
two vertices in UY) adjacent to u . This implies
SURURk) =2V = 2m -
Since U@, u®} is a partition of U

$U) = SU D) +US) +&U S, UM, . By the induction
hypothesis, we have

by Lemma 1,

mk
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EUpy) =6UR)+EUS)+EUTUR)
FAUS D+ FUD D+EUA.UN)
f (2"’1) +f(m)+2m.

Therefore, by Proposition 1, (U, )= f(m) because
I(m)=k-1.

Case 3:m =2

In this case, U, contain all the vertices in the AQ, and
§U ) = (k=127
1
2

From Lemma 3 and Lemma 4, we have
max, . (m)=¢&U,,) = f(m). Thus Theorem 1 is proved.

By definition of f(m), we have

f(2") = (k-3)2" = (2k-1)2"*. Hence, &U,,,) = f(m).

V.APPLICATION TO BISECTION WIDTH

The bisection width of graph G, denoted by bisection(G),
is the minimum cardinality of an edge cut of G that splits G
into two equally-size parts. The arm of this section is to
determine the bisection width of AQ, .

Lemma 5For a set U of vertices of n -regular graph G,
we have £(U,V(G)-U)=nx|U |-2£U).

Theorem 2 For any integer n , we have
bisection(AQ,) =2"

Proof. The proof is obviously true for n=1,2 . Suppose
n>3. For any set U of 2" vertices of AQ,, by Lemma 5
and Theorem 1 that

EUV(AQ,)-U) =(@2n-1)x2"*-2£U)

>(2n-1)x 2"t —2x f(2" 1)
=(2n-1)x2"* -2(2n-3)2"?
=2"

Thus, bisection(AQ,)>2" . On the other hand, let
U =V(AQ?,). Then |U |=2"" and £(U,V(AQ,)-U)=2".

Therefore, we have bisection(AQ,) =2"".
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