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feedback. Given that early designs of ambidextrous fingers 
were controlled with the parallel form of PID loops [11], a 
similar layout of algorithms has still been used to control the 
angular displacements of the final models. Nevertheless, the 
new asymmetrical design required the use of dynamic gain 
constants to add more stability around some specific setpoints. 
These coefficients vary according to the joints position using a 
phase plane switching control (PPSC) similar to the one 
described in [12]. Moreover, a further solution was looked for, 
to add more robustness to the Ambidextrous Robot Hand 
control algorithms concerning the force applied by the 
fingertips, and so their grasping features. Previous researches 
show that SMC is quite frequently used in this area, as it 
permits to deal with parameters uncertainty [13] by stabilizing 
the error dynamics of nonlinear mechanisms [14]. In [15], the 
chattering phenomenon of a robot driven by PAM is reduced 
with high order sliding mode. SMC has also been combined 
with neural network to estimate unknown plant dynamics [16]. 
Finally, as the solid analysis for nonlinear models driven by 
PAMs described in [17] presents better results for SMC than 
for flatness-based control and backstepping control, SMC has 
been investigated to interact with the position features of the 
Ambidextrous Hand. Once the SMC reaches its objective, a 
second PPSC puts the system back under the control of PID 
loops. 

To cut a long story short, the developed control algorithms 
must cover the huge range of the ambidextrous fingers, taking 
into account both their design asymmetry and the PAMs’ 
nonlinearity. In order to proceed, standard PID loops, dynamic 
gain constants and SMC continuously relay to each other 
during finger motion, according to the priority order estimated 
by two PPSCs. The approach presented in this paper is 
organized as follows. First, classic PID loops are used to 
control the ambidextrous fingers asymmetrical design. The 
weak points of the algorithm are revealed, as well as the 
implementation of dynamic coefficients when the phalanges 
must reach critical angles. The evolution of kinematic motion 
is studied to anticipate the transition of coefficients and to 
avoid the system becoming unstable. In a second part, a 
sliding surface is modelled when the fingers get in contact 
with an object, so the Ambidextrous Hand can properly hug its 
shape. 

II. CONTROL OF ANGULAR DISPLACEMENTS 

A. Parallel PID Form Adapted to the Asymmetrical Design 
As angular feedback is measured straight from joints, the 

PAMs nonlinearity does not directly interfere in the control of 
phalanges displacements. Consequently, the simplest solution 
consisted in adapting the previous control algorithms to the 
asymmetrical design. Thus, series of experiments have been 
performed on ambidextrous fingers, moving them between 
their extreme positions using small pulses, to bring the 
phalanges to the desired angles step by step. The pressure 
feedback of the different PAMs is indicated in Fig. 2, with the 
fingers extreme positions numbered from 1 to 9. The 
experiments were done starting from both extremums to the 

other, so the hysteretic behavior of PAMs could be averaged. 
First, it can be seen that the right and left PAMs function in 
antagonist way, which means the parallel form of a PID 
controller can be used in a classic way with the equation: 

 
ሻݐሺݑ ൌ ሻݐ௣݁ሺܭ ൅ ௜ܭ ׬ ݁ሺ߬ሻ݀߬௧

଴ ൅ ௗܭ 
ௗ
ௗ௧

݁ሺݐሻ             (1) 
  
and the tuning methods such as explained in [18]. In that case, 
the correcting output ݑሺݐሻ depends on the error݁ሺݐሻ, which 
corresponds to the difference between the target value and the 
current data feedback, as well as on the gain constantsܭ௣, ܭ௜ 
and ܭௗ that are respectively the proportional, integrative and 
derivative constants. When the system is tuned properly, they 
allow for increasing the fingers’ reactivity, sensibility and 
stability, avoiding overshoots and oscillations. As left and 
right muscles are antagonist, they vary according to the same 
amount of pressure (and consequently at the same speed) to 
make the medial and distal phalanges reach an angular target 
 ௧. Therefore, the same gain constants are attributed to both ofߠ
these PAMs, but reacting in opposite ways, which means the 
first one contracts whenever the second one relaxes. However, 
it is also noticed in Fig. 2 that the proximal PAM’s pressure is 
often about twice as large as the sum of the two others when 
the proximal PAM is involved, and so can be its pressure 
variation from one position to another. This is the reason why 
starting points and setpoints are compared to each other before 
any movement. Using an approach similar to the one 
described in [19], pressure variations are estimated from the 
data collection, so the ratio is applied to the constant gains of 
the proximal PAM, which makes it react, more or less, faster. 
As the sum of pressures for the left and proximal PAMs on the 
finger’s left side corresponds to the sum of pressures for the 
left and right PAMs on the finger’s right side, this provides a 
kind of symmetry that makes the system possible in most of 
cases. However, this symmetry deforms itself when the 
proximal phalange is close to a vertical position. This is why 
the vertical position must be anticipated to replace the gain 
constants by dynamic values. 
 

 
Fig. 2 PAMs’ pressure variation according to fingers’ extreme 

positions, where position 1 refers to “proximal and medial / distal 
phalanges on left side”, position 2 refers to “proximal phalange on 

left side, medial / distal phalanges straight”, position 3 refers to 
“proximal phalange on left side, medial / distal phalanges on right 

side”… and position 9 refers to “proximal and medial / distal 
phalanges on right side” 
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where, 
 ெ௔௫                                     (13)݌ / ெ௔௫ߠ=గܭ 
 
so angles and pressure have an equivalent impact in the 
inequality. ܭఏ௣  and  ܭఏሶ ௣ሶ  are constant ratios different for each 
PAMs and obtained from the experiment shown in Fig. 2. 
When at least one inequality of (13) goes wrong, it means a 
phalange is in contact with an object. With a method very 
similar to the one described in [17], the sliding surface is then 
defined as: 
 
 ܵሺݐሻ ൌ ሻݐሺߠ߂ఏ௣ሾܭ כ ሻݐሶሺߠ߂ + ሻሿݐሺ݌߂గܭ כ  ሻ      (14)ݐሶሺ݌߂గܭ
 
 ሶܵሺݐሻ ൌ ሻݐሶሺߠ߂ఏ௣ሾܭ כ ሻݐሷሺߠ߂ + ሻሿݐሶሺ݌߂గܭ כ  ሻ      (15)ݐሷሺ݌߂గܭ
  
with ܭఏ௣ calculated as: 
 
ሻݐሶሺߠ߂ఏ௣=ሾܭ  כ ሻݐሺߠ߂ሻெ௔௫ሿ / ሾݐሶሺ݌߂గܭ כ  ሻሿெ௔௫   (16)ݐሺ݌߂గܭ
 

Then the convergence to {ܵሺݐሻ, ሶܵሺݐሻሽ is achieved using a 
Lyapunov function to bring the system to an equilibrium 
point: 

 
ܮ  ൌ  ሻ                            (17)ݐሻ *  ሶܵሺݐ௉஺ெ *  ܵሺܭ 
 

In the case of PAM technology, ܭ௉஺ெ is usually chosen as 
½ such as in [16], [21], but because of the fingers 
asymmetrical tendon routing, the coefficient attributed to each 
PAM varies from one to another, as in II.A. Thus, the 
maximum value of ܭ௉஺ெ is defined as ½, but is often reduced 
according to the phalange position provided by  ߠሺݐሻ. The 
boundary surface is consequently described as: 

 
 ݈ ൌ ௉஺ெܭ  ሶܵሺݐሻ ൅ tanh ሺܭ௉஺ெ כ ܵሺݐሻ/ߝ௕ሻ            (18) 
 
 So, the phalanges are going to tighten around the object, 
sliding along the limit defined by the Lyapunov function until:  
 
ሻݐሺߠ߂  ൏  ௢                                       (19)ߝ
 
where ߝ௢ is a small constant, aiming at stopping the SMC 
when the angle barely varies between two successive 
feedbacks. The bigger ߝ௢, the more delicate the object is that 
the Ambidextrous Hand can grab; the smaller the grabbing 
force. The efficiency of this method is shown in Fig. 4, where 
the Ambidextrous Hand is grabbing two fragile objects of 
different shapes on both sides, for the same ߝ௢. The structure 
of the whole control approach is illustrated in Fig. 5. 

The experiment illustrated in Fig. 4 (a) is repeated a number 
of times to collect data. Putting the egg at close initial 
positions for each run, the final angles reached by the 
concerned metacarpo-phalangeal joints (MCP) and the 
proximal interphalangeal joints (PIP) are gathered in Fig. 6. It 
is seen that MCP and PIP joints depend on each other: when 
one decreases, the other one increases to secure the grasping. 
As the new design of the ambidextrous hand stepped aside the 
thumb opposition in favor of its abduction / adduction, it is 

also noted that only the force of the thumb’s adduction is 
applied to the object. Consequently, the objects are not in 
contact with the inside of the thumb but with its side, which 
makes the grasping not as human-like as the ones that would 
be possible, for instance, with the motorized control system 
introduced in [22]. However, the holding features of the 
ambidextrous hand are still more anthropomorphic than the 
ones of the two-fingered and three-fingered motorized robot 
hands respectively concerned in [23] and [24], even though 
these two models have other advantages. Indeed, changing the 
shape of the hand, as well as the position and the number of 
fingers, can ease the implementation of control algorithms, 
allowing a stronger grasp and so an accurate manipulation of 
objects, as shown by the stability of the system described in 
[25]. Nevertheless, despite its thumb limitation, the 
experiments proved that the Ambidextrous Hand can grab 
objects in a similar way to that of the robot hands illustrated in 
[26]. 

 
 

 
(a) (b)

Fig. 4 Grasping abilities of the Ambidextrous Robot Hand. The left 
hand mode grabs an egg on (a) whereas the right hand mode grabs an 
Arduino microcontroller on (b). It is noted that ring and little fingers 

came back to a position close to vertical on (a), as the angular and 
pressure feedbacks revealed that they were not in contact with any 

objects 
 

 
Fig. 5 Global diagram of the described control approach. It is noted 
that the PID loops are stopped when the SMC is triggered and that 
the grasping angle is put as the new setpoint when the SMC stops 
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During these same experiments, in addition to joint angles, 
the pressure of PAMs is also collected. Their grasping values 
are gathered in Fig. 7. Except the thumb’s adduction that is 
controlled by its right PAM, it is seen for the other joints 
thatthe higher the pressure, the smaller the angle and that the 
PAMs connected to the MCP joints require more pressure than 
PIP’s ones. Despite the asymmetrical architecture, it is noted 
that the ambidextrous fingers are approximately as accurate 
and as stable as the ones of other models. Indeed, the pressure 
variation of PAMs is roughly as small as the one of the two 
muscles robot arm presented in [27] or as the pneumatic assist 
wear introduced in [28], whereas the angles of the force 
control mode are very close to the results introduced in [29]. 

IV.   CONCLUSION 
A first approach to control the fingers motions and the 

grasping abilities of a unique ambidextrous hand design was 
introduced in this paper. The experiments carried out with the 
robotic device confirmed that the proposed control system is 
appropriate for both cases, even though the finger motion may 
vary for a setpoint close to the vertical position. The next steps 
of the control approach consist in linearizing the angular speed 
and in increasing the possible interactions with objects, such 
as moving them up and down or to transfer the force applied 
from one finger to another. 

 

 
Fig. 6 Joints’ angles when the ambidextrous hand is holding an egg 

 

 
Fig. 7 PAMs’ pressures when the ambidextrous hand is holding an 

egg 
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