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Abstract—The characteristics of fluid flow and heat transfer over 

a permeable shrinking sheet is studied. The governing partial 
differential equations are transformed into a set of ordinary 
differential equations, which are then solved numerically using 
MATLAB routine boundary value problem solver bvp4c. Numerical 
results show that dual solutions are possible for a certain range of the 
suction parameter. A stability analysis is performed to determine 
which solution is linearly stable and physically realizable. 
 

Keywords—Dual solutions, heat transfer, shrinking sheet, 
stability analysis.  

I. INTRODUCTION 
HE flow and heat transfer over a linearly stretching sheet 
was first considered by Crane [1], who reported the 

solution in a closed analytical form. Gupta and Gupta [2] 
extended this problem to a permeable stretching sheet. Grubka 
and Bobba [3] realized that Crane’s solution to the boundary 
layer equation also happens to be an exact solution to the 
Navier-Stokes equations. Since then, many authors have 
considered various aspects of this problem such as Chen and 
Char [4], Chen [5] and Ishak et al. [6]-[8], among others. 

Different from the flow over a stretching sheet, the flow 
over a shrinking sheet only received the attention quite 
recently. Miklavčič and Wang [9] was the first who studied 
the properties of a viscous flow due to a shrinking sheet, and 
found that the solutions are non-unique. The flow is unlikely 
to exist unless adequate suction on the boundary is imposed, 
since vorticity of the shrinking sheet is not confined within a 
boundary layer. This problem was then extended by Fang and 
Zhang [10] to magnetohydrodynamic flow, and successfully 
obtained the closed form analytical solution. Moreover, the 
solution obtained by Fang and Zhang [10] is also an exact 
solution of the governing Navier-Stokes equations for that 
problem, and they reported greatly different solution behavior 
with multiple solution branches compared to the 
corresponding stretching sheet problem. 

The present study investigates the stability of the non-
unique solution for the flow over a shrinking sheet reported by 
Miklavčič and Wang [9] and Fang and Zhang [10].  

II. MATHEMATICAL FORMULATION 
Consider a steady boundary layer flow of a viscous fluid 

over a linearly shrinking sheet with suction at the boundary as 
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shown in Fig. 1. It is assumed that the shrinking velocity is in 
the form ( )wu x c x= , where c  is a constant and is maintained 
at a constant temperature wT . It is also assumed that the mass 
flux velocity is 0v  with 0 0v <  for suction and 0 0v >  for 
injection. Under these assumptions, the steady governing 
continuity, momentum and energy boundary layer equations 
are [11] 
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where u and v are the velocity components along the x- and y-
axes respectively, T is the fluid temperature, α is the thermal 
diffusivity and ν is the kinematic viscosity.  

The equations are subjected to the boundary conditions  
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where λ  is the stretching/shrinking parameter with 1λ =  for 
stretching and 1λ = −  for shrinking.  
 

 
Fig. 1 Physical model and coordinate system 

 
In order to solve (1) to (3) subject to the boundary 

conditions (4), we introduce the following similarity 
transformation: 
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where ψ  is the stream function defined as /u yψ= ∂ ∂  and 

/v xψ= −∂ ∂ , which identically satisfies (1).  
Substituting (5) into (2) and (3) we obtain the following 

ordinary differential (similarity) equations 
 

2 0f f f f′′′ ′′ ′+ − =         (6) 
1 '' ' 0
Pr
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where prime denotes differentiation with respect to η  and 
Pr /ν α=  is the Prandtl number. The boundary conditions (4) 
become 
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where 1/2

0 / ( )S v cν= −  is the constant mass transfer parameter 
with 0S >  for suction and 0S <  for injection. 

The quantities of physical interest are the skin friction 
coefficient fC , and the local Nusselt number xNu , which are 
defined as 
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where wτ  is the surface shear stress along the plate and wq  is 
the heat flux from the plate, which are defined as   
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Using (5) we get 

 
( )1/2 1 2Re (0), Re 0x f x xC f Nu θ−′′ ′= = −       (11) 

 
where Re /x wu x ν=  is the local Reynolds number.  

III. STABILITY OF SOLUTIONS 
In order to perform a stability analysis, we consider the 

unsteady problem. Equation (1) holds, while (2) and (3) are 
replaced by  
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where t denotes the time. Based on the variables (5), we 
introduce the following new dimensionless variables: 
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so that (2) and (3) can be written as 
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and are subjected to the boundary conditions 
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To test the stability of the steady flow solution 

0( ) ( )f fη η=  and 0( ) ( )θ η θ η=  satisfying the boundary-value 
problem (1)-(4), we write (see [12]-[14]), 
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where γ  is an unknown eigenvalue, and ( , )F η τ  and ( , )G η τ  
are small relative to 0 ( )f η  and 0 ( )θ η . Solutions of the 
eigenvalue problem (15)-(17) give an infinite set of 
eigenvalues 1 2γ γ< <  ; if the smallest eigenvalue is 
negative, there is an initial growth of disturbances and the 
flow is unstable; but when 1γ  is positive, there is an initial 
decay and the flow is stable. Introducing (18) into (15) and 
(16), we get the following linearized problem 
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The solutions 0( ) ( )f fη η=  and 0( ) ( )θ η θ η=  of the steady 
equations (6) and (7) are obtained by setting 0τ = . Hence 

0 ( )F F η=  and 0 ( )G G η=  in (19) and (20) identify initial 
growth or decay of the solution (18). In this respect, we have 
to solve the linear eigenvalue problem  
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along with the boundary conditions 
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It should be stated that for particular values of Pr and γ , the 

stability of the corresponding steady flow solutions 0 ( )f η  and 

0 ( )θ η  are determined by the smallest eigenvalue γ . As it has 
been suggested by Harris et al. [15], the range of possible 
eigenvalues can be determined by relaxing a boundary 
condition on 0 ( )F η  or 0 ( )G η . For the present problem, we 

relax the condition that 0 ( ) 0F η′ →  as η → ∞  and for a fixed 
value of γ  we solve the system (26, 27,28) along with the 

new boundary condition 0 (0) 1F ′′ = . 

IV. RESULTS AND DISCUSSION 
The system of equations (6)-(8) was solved numerically 

using the bvp4c solver in MATLAB software. In order to 
validate the numerical results obtained, we have compared our 
results with the stretching case, 1λ = , which showed an 
excellent agreement.  

For the stretching case, 1λ = , the exact analytical solution 
for the flow field has been reported by Gupta and Gupta [2], 
while the solution for the thermal field in terms of Kummer’s 
functions has been obtained by Chen and Char [4], and they 
are respectively given by 
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where 1/S ζ ζ= −  and 0ζ > , with 1ζ >  for suction, 1ζ <  
for injection, while 1ζ =  corresponds to the impermeable 
surface that has been considered by Crane [1]. In (26), 

( , , )F a b z  denotes the Kummer’s function (see Abramowitz 
and Stegun [16]). By using (25) and (26), the skin friction 
coefficient (0)f ′′  and the local Nusselt number (0)θ ′−  can be 
shown to be given by 
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Moreover, when Pr 1= , the solution ( )θ η  given in (26) 

can be expressed as ( ) ( )f e ζηθ η η −′= = , which implies 
 

(0)θ ζ′− = .          (28) 
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Fig. 2 Variation of the skin friction coefficient (0)f ′′  with S when 

1λ = −  (shrinking case) 
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Fig. 3 Variation of the local Nusselt number (0)θ′−  with S when 

Pr 1=  and 1λ = −  (shrinking case) 
 
Different from the stretching case, which shows unique 

solution, see (25) and (26); the solutions for the shrinking case 
as presented in Figs. 2 and 3 are non-unique. The validity of 
these numerical solutions is supported by the velocity and 
temperature profiles presented in Figs. 4 and 5. The existence 
of dual solutions for the shrinking sheet was first reported by 
Miklavčič and Wang [9]. As shown in Figs. 2 and 3, 
respectively for the skin friction coefficient and the heat 
transfer rate at the surface, two solutions were obtained for the 
same value of the suction parameter S for the range 2S > . We 
term these solutions as upper and lower branch solutions, by 
how they appear in Figs. 2 and 3, i.e. the upper branch 
solution has higher values of (0)f ′′  and (0)θ ′−  than the 
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lower branch solution. It is worth mentioning that the exact 
solution for the flow field was reported by Fang and Zhang 
[10] as  
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which confirmed that there are two solutions for 2S > . The 
solution is unique at 2S = , i.e. (0) 1f ′′ = , which is in 
agreement with the result presented in Fig. 2.  
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Fig. 4 Velocity profiles for different values of S when 1λ = −  

(shrinking case) 
 

To test the stability of the solutions, we perform a stability 
analysis and find the eigenvalues γ  in (18). If the smallest 
eigenvalue is negative, there is an initial growth of 
disturbances and the flow is unstable; while when the smallest 
eigenvalue is positive, there is an initial decay and the flow is 
stable. The smallest eigenvalues γ  for selected values of S are 
presented in Table I which shows that γ  is positive for the 
upper branch solution and negative for the lower branch 
solution. Thus, the upper branch solution is stable, while the 
lower branch solution is unstable. The transition from positive 
(stable) to negative (unstable) values of γ occurs at the turning 
points of the parametric solution curves ( 2S = ), which is 
shown in Fig. 2. 
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Fig. 5 Temperature profiles for different values of S when Pr 1=  and 

1λ = −  (shrinking case) 
 

TABLE I 
SMALLEST EIGEN VALUES γ  AT SEVERAL VALUES OF S 

S Upper Branch Lower Branch 
2.1 0.4040 -0.3355 
2.3 0.7574 -0.5371 
2.5 1.0527 -0.6511 
3.0 1.7952 -0.8042 
4.0 3.5817 -0.9514 
5.0 5.7390 -1.4885 

 
Since the upper branch solution is stable and likely 

physically realizable, our next discussion is about these 
solutions. Fig. 2 shows that the skin friction coefficient 
increases as S increases. This is due to the fact that increasing 
suction increases the friction at the solid-fluid interface, and 
thus increases the skin friction coefficient. As a result, the 
local Nusselt number, which represents the heat transfer rate at 
the surface, increases as presented in Fig. 3. 

V. CONCLUSIONS 
Different from the stretching case, numerical results showed 

that dual solutions, upper branch and lower branch, are 
possible for a certain range of the shrinking parameter. The 
stability analysis showed that there is an initial decay for the 
upper branch solution, while there is an initial growth of 
disturbances for the lower branch solution. Thus, the upper 
branch solution is linearly stable, while the lower branch 
solution is linearly unstable. Both the skin friction coefficient 
and the heat transfer rate at the surface increase as the 
magnitude of suction increases. 
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