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Abstract—A scheme integrated with deterministic–stochastic 

subspace system identification and the method of damage localization 
vector is proposed in this study for damage detection of structures 
based on seismic response data. A series of shaking table tests using a 
five-storey steel frame has been conducted in National Center for 
Research on Earthquake Engineering (NCREE), Taiwan. Damage 
condition is simulated by reducing the cross-sectional area of some of 
the columns at the bottom. Both single and combinations of multiple 
damage conditions at various locations have been considered. In the 
system identification analysis, either full or partial observation 
conditions have been taken into account. It has been shown that the 
damaged stories can be identified from global responses of the 
structure to earthquakes if sufficiently observed. In addition to 
detecting damage(s) with respect to the intact structure, identification 
of new or extended damages of the as-damaged (ill-conditioned) 
counterpart has also been studied. The proposed scheme proves to be 
effective. 
 

Keywords—Damage locating vectors, deterministic-stochastic 
subspace system, shaking table tests, system identification.  

I. INTRODUCTION 
VER the last decade, structural health monitoring (SHM) 
has attracted a great deal of attention in civil engineering. 

Development of promising SHM systems to efficiently assess 
the integrity of critical buildings, industrial manufactories and 
infrastructures right after the strike of an earthquake is in urgent 
demand. A SHM system is pragmatic only if integrated with 
reliable measures in response monitoring, system identification 
and damage detection. System identification schemes that 
make a direct use of the recorded data acquired from limited 
locations to reconstruct the full (or equivalent) state-space 
system parameters representative of the physical structures are 
desired. Among the damage detection techniques based on 
variation of the physical parameters as the structure 
deteriorates, the flexibility-based approaches have shown to be 
very promising and computationally efficient. Pandey and 
Biswas [1] demonstrated that the damage locations of a 
wide-flange steel beam could be identified by interrogating the 
change of the flexibility matrix. The method of Damage 
Localization Vector (DLV) proposed by Bernal is of great 
potential in advancing structural health monitoring into 
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practical application [2], [3]. This flexibility-based approach is 
capable of identifying multiple damages in the structure via a 
truncated modal basis without a predetermined analytical 
model. Structural members with nearly zero stress under the 
loading of the DLV are considered potentially damaged. The 
DLV are determined by performing Singular Value 
Decomposition of the flexibility differential before and after the 
damage state of the structure. The flexibility matrix is obtained 
from system identification analysis of the structure via natural 
or artificial dynamic testing.  

To facilitate implementation of the DLV method, system 
identification technique that identifies the system matrix and 
output (observation) matrix of a state-space model is 
considered. The method of System Realization using 
Information Matrix (SRIM) proposed by Juang [4] is based on a 
deterministic state-space system. The equivalent system matrix 
is identified from the covariance matrix of the input and output 
signals. This simple and elegant approach works well for 
systems in response to transient excitation if the noise level is 
negligible. The performance degrades, however, as the noise 
becomes pronounced [5], [6]. On the contrary, the Stochastic 
Subspace Identification (SSI)method based on a stochastic 
model ([7],[8]) without knowing the input is less sensitive to 
noise and works well if the excitation is Gaussian white noise. 
This scheme is not sufficient, however, for systems under 
transient excitations such as earthquakes [5], [6]. Therefore, a 
mixed deterministic-stochastic model is considered more 
robust to transient systems with non-negligible noise 
contamination. The stochastic realization theory initiated by 
Akaike [9] and Faure [10] is non-iterative and convergence- 
guaranteed. The covariance matrix is first constructed from 
block Hankle matrix of shifted process sequences. The 
state-space model is in turn realized from the observability 
and/or controllability matrix via Singular Value Decomposition 
of the covariance matrix. The theory of covariance-driven 
subspace method has been unified by Van Overschee and De 
Moor [8] for deterministic, stochastic and combined systems by 
defining the estimated state sequences as the projection of 
input-output data. The projected state sequences turn out to be 
the outputs of non-steady state Kalman filter banks. A 
numerically stable and efficient algorithm has been devised by 
Overschee and De Moor [11] to solve for the system matrix. 
The algorithm is adopted in this study.  
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II. THEORETICAL BACKGROUNDS 

A. Deterministic-Stochastic Subspace System Identification 
A deterministic-stochastic linear time-invariant system is 

represented in a discrete-time state-space model as: 
 

kkk1k wBuAzz ++=+        (1a) 
 

kkkk vDuCzy ++=                       (1b) 
 
where 12 ×∈ n

k Rz  and 1×∈ m
k Ry  are respectively the state and 

output vectors, and 1×∈ r
k Ru is the input vector at time instant k. 

nnR 22 ×∈A  is the system matrix, rnR ×∈ 2B  is the input 
influence matrix, nmR 2×∈C  is the observation matrix and 

rmR ×∈D  is the direct transmission matrix. 12 ×∈ n
k Rw and 

1×∈ m
k Rv  are the un-measurable vector signals assumed to be 

zero-mean, stationary white noise vector sequences. By 
recursive substitution into the state-space equations of 
consecutive shifted processes, it leads to [6] 
 

s
1-i010

d
0i1-i0 │││ YUHZΓY ++= −ii        (2a) 

 
s

1-2ii12i
d
ii1-2ii │││ YUHZΓY ++= −ii       

(2b) 
 

1-i0
d
0

d
i │UΛZAZ ii +=         

(2c) 

where 

jmi

2ji1ii1i

1j432

j321

1j210

1-i0 R ×

−++−

+

−

∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

yyyy

yyyy
yyyy
yyyy

Y│

is the output block 

Hankle matrix of the past; 

jmi

s
2ji

s
1i

s
i

s
1i

s
1j

s
4

s
3

s
2

s
j

s
3

s
2

s
1

s
1j

s
2

s
1

s
0

s
1-i0 R ×

−++−

+

−

∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

yyyy

yyyy
yyyy
yyyy

Y│

is the stochastic 

output block Hankle matrix of the past; 

jir

2ji1ii1i

1j432

j321

1j210

1i0 R ×

−++−

+

−

− ∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

uuuu

uuuu
uuuu
uuuu

U │

is the input block 

Hankle matrix of the past; 
[ ] jn2d

1ji
d

2i
d

1i
d
i

d
i R ×

−+++ ∈= zzzzZ is the deterministic 

state matrix; 

n2mi

1i

2
i R ×

−

∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

CA

CA
CA
C

Γ
is the observability matrix; 

irmi

iii

i R ×

−−−

∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

DBCABCABCA

0DCBCAB
00DCB
000D

H

432

 is the 

triangular Toeplits matrix; 
[ ] irnii

i R ×−− ∈= 221 BABBABAΛ is the 
controllability matrix, and 
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Equation (2c) can be easily extended from (2b) for the 

“future” of the shifted sequences. 
The stochastic covariance equations of the subspace can be 

defined as 
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The stochastic Toeplitz matrices are defined as 
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and 
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i R ×−−− ∈= G...GAGAGAΛ  is the stochastic 

controllability matrix. 
Projecting the future output state matrix 1-2ii│Y onto the input 

matrix 1i20 −│U  and the past output state matrix 1i0 −│Y , the 

output-input block Hankel matrices are constructed as 
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where *• is the pseudo-inverse of• . 
To further simplify (5a) and (5b), the deterministic subspace 

and stochastic subspace are utilized to define what follows, 
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Assuming that the deterministic input ku and the 

deterministic state d
kz  are independent of the stochastic 

output s
ky , then (5a) and (5b) can be simplified as 
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Equations (5a) and (5b) can be rearranged as 
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where *
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The non-stationary Kalman state vector kẑ can be defined as 
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be expanded as 
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Substituting (8a) and (8b) for 

iẐ  and 
1

ˆ
+iZ  into (14), it leads 

to 
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By forcing the noise terms in (14) to be zero, the coefficient 

matrices may be resolved as 
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numerically stable and efficient algorithm referred to as the 
N4SID devised by Overschee and De Moor [11] is adopted in 
this study to solve for the system matrix.  

B. Damage Localization Vector 
Bernal [2] proposed that the structure subjected to the 

damage locating vectors L  would undergo the same 
deformation before and after the damaged state. This statement 
immediately leads to 

 
0LD =F            (17) 

 
where FD  is the flexibility differential of the structure before 
and after damaged. When nrank F <)(D  (n is the degree of 
freedom of the structure), the basis corresponds to the null 
space of FD  is the damage locating vectors L , which can be 
derived from singular value decomposition of the flexibility 
differentia. Members with nearly zero stress under the loadings 
of DLVs are considered potentially damaged. 

The flexibility matrix of the structure can be expressed with 
the system matrices of the continuous-time state-space 
representation as 

 
DQDCHACF ~~

0
11

0 =−= −− T
c       (18) 

 

where nn
c R

t
22)ln( ×∈=

Δ
AA  is the continuous-time system matrix; 

[ ] nnR 2
0

×∈= 0IC ; nn

c
R 22

0

0 ×∈⎥
⎦

⎤
⎢
⎣

⎡
=

AC
C

H ； 1
0

~ −−== MBACD cc  

( M  being the mass matrix of the system). With (18), the 
flexibility differential FD  can be expressed as 
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where id QQQ −=Δ  and 0DDD =−= id ~~~

Δ  since the mass matrix 

is unchanged. By taking the singular value decomposition of 
QΔ , the eigen-vectors QVΔ

0  correspond to the singular 
eigen-values is the damage locating vector qnR ×∈L .  
The normalized weighted stress index jWSI  is defined as 
 

∑
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where 

ijnsi ,
is the normalized stress index of the j-th member 

or d.o.f. subjected to the i-th DLV. Member j (or storey j) is 
considered seriously damaged when the normalized weighted 
stress index 0.1nWSI ≤j

in which 
max,/nWSI jjj WSIWSI= , 

whereas it is considered moderately damaged as 
0.2WSI0.1 ≤< jn . 

III. EXPERIMENTAL SETUP 
This series of shaking table tests has been carried out in 

NCREE, Taiwan using a benchmark model, as illustrated in Fig. 
1. It is a five-storey steel frame with 4.5 ton weight at each 
floor. Accelerometers have been implemented at the mass 
center of each floor and the base to monitor the dynamic 
responses serving as the basis for system identification. 

 

 
Fig. 1 Front and top views of the benchmark model 

 
Damage of the structure is simulated by cutting out a small 

portion of the flange near the bottom of the column(s), as 
shown in Fig. 2. In order to sufficiently examine the damage at 
various extents, the damages were progressively enforced on 
one side of the frame from the 1st storey to the 3rd storey. It is 
meant to represent a moderate damage condition as a single 
column being damaged and a serious damage condition as two 
columns being damaged in the same storey. Totally six damage 
conditions have been considered in the tests. The 1940 El 
Centro earthquake has been adopted as the input with the PGA 
scaled to 0.1g.  

 

 
Fig. 2 Flange partially cut-out at the bottom end of column 

IV. TEST RESULTS 
The test results are analyzed under considerations of full 

observation (utilizing acceleration responses of all floors), 
partial observation (ignoring some floor accelerations) and 
ill-conditioned condition where the reference structure has been 
wounded in the previous tests. 
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A. Full Observation 
The six damaged conditions simulated in the tests are 

designated as:  
M1: Single column damaged at the first floor, representing a 

moderate damage condition of the first storey; 
S1: Two columns damaged at the first storey, representing a 

serious damage condition of the first storey; 
S1M2: Two columns damaged at the first storey and single 

column damaged at the second storey; 
S12: Two columns damaged at both the first and second 

stories; 
S12M3: Two columns damaged at both the first and second 

stories and single column damaged at the third storey; 
S123: Two columns damaged from storey 1 to 3. 
The assessment results of various damage conditions based 

on full observation data of the structure are summarized in 
Table I where the shaded area corresponds to those being 
screened out as potentially damaged stories. It is evident that, 
under a full observation condition, the damaged location(s) are 
successfully identified, regardless of single or multiple damage 
conditions. 

TABLE I 
SUMMARY OF DAMAGE ASSESSMENT W/ FULL OBSERVATION 

 nWSIj﹟ 
Case M1 S1 S1M2 S12 S12M3 S123 
1F 0.09 0.05 0.04 0.07 0.01 0.04 
2F 1.00 0.44 0.12 0.06 0.01 0.01 
3F 0.97 0.90 1.00 0.81 0.11 0.04 
4F 0.72 1.00 0.89 0.90 0.51 0.83 
5F 0.86 0.56 0.45 1.00 1.00 1.00 

Performance Good Good Good Good Good Good 

﹟nWSIj ≦0.1 indicates serious damage; 0.1<nWSIj ≦0.2 indicates moderate 
damage 

B. Partial Observation 
As a further step to exam if the scheme is also valid as the 

vibration data is not fully available for all floors, the system 
identification analysis utilizing only part of the information is 
considered. Designation of the cases for partial observation is 
first the damage condition followed with the observed floors 
after a “/”. Take M1/135 for example, it stands for a moderate 
damage condition at the first storey and only the 1st, 3rd and 5th 
floors are observed. 

 
TABLEII  

SUMMARY OF DAMAGE ASSESSMENT W/ PARTIAL OBSERVATION 
 WSIj 

Case M1/135 S1/135 M1/124 S1/124 S1M/124 S1M2/125 
1F 0.14 0.11 0.17 0.16 0.41 0.41 
2F - - 1.00 1.00 1.00 1.00 
3F 0.74 0.72 - - - - 
4F - - 0.41 0.43 0.33 - 
5F 1.00 1.00 - - - 0.38 

PMC﹡ Good Fair Good Fair Fail Fail 

 WSIj 
Case S1M2/1235 S12/124 S12/125 S12/1235 S12M3/1235 S123/1235 
1F 0.02 0.96 1.00 0.01 0.09 0.14 
2F 0.24 1.00 0.27 0.20 0.70 0.15 
3F 1.00 - - 1.00 1.00 0.48 
4F - 0.07 - - - - 
5F 0.66 - 0.81 0.78 0.63 1.00 

PMC Poor Fail Fail Fair Fail Poor 

﹡Good indicates the damaged location(s) being identified without miss-judgment. 
Fair indicates the damaged storey being identified but the extent might be underestimated. 
Poor indicates failing to identify one of the damaged stories. 
Fail indicates failing to identify more than one of the damaged stories. 
 

The assessment results of various damage conditions based 
on partial observation data of the structure are summarized in 
Table II where the shaded area corresponds to those being 
screened out as potentially damaged stories. The scheme with 
partial observation remains effective for single damage 
conditions, as in the cases of M1/135, S1/135, M1/124 and 
S1/124. The scheme fails, however, to locate the damaged 
stories in multiple damage conditions except for case S12/1235 
where the first two stories are seriously damaged and 4 out of 5 
stories are observed.  

 

C. Ill-Conditioned Structures 
If the structural health monitoring system is introduced after 

the target building has been previously damaged, it is of interest 
to verify if the scheme is able to identify new or extended 
damage(s) of an ill-conditioned structure damaged earlier after 
another earthquake event. The system identification analysis 
will be based on full observation data as it provides more 
reliable structural information for damage assessment. 
Designation of the cases under study for ill-conditioned 
structures is first the current damage condition followed with 
the one serving as the basis for comparison after a “/”. Take 
S1/M1 for example, it stands for a serious damage condition at 
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the first storey of the current state versus the one with its first 
storey moderately damaged earlier. 

The assessment results of various damage conditions in 
respect to an ill-conditioned structure damaged earlier are 
summarized in Table III. The performance index (PMC) is 
similarly defined as in Table II. In all the cases considered, the 
scheme proves to be sufficient in identifying new or extended 
damage(s) without exception, under a full observation 
condition. 

 
TABLE III 

DAMAGE ASSESSMENT OF ILL-CONDITIONED STRUCTURES 
 WSIj 

Case S1/M1 S1M2/S1 S12/S1M2 S12M3/S12 S123/S12M3 
1F 0.16 0.10 0.26 0.24 0.32 
2F 0.46 0.01 0.03 0.46 0.55 
3F 1.00 0.29 0.36 0.16 0.17 
4F 0.58 0.85 0.73 1.00 1.00 
5F 0.90 1.00 1.00 0.62 0.72 

PMC Good Good Good Good Good 
 WSIj 

Case S12/M1 S12M3/M1 S123/M1 S12/S1 S123/S1 
1F 0.01 0.01 0.02 0.48 1.00 
2F 0.02 0.02 0.01 0.07 0.03 
3F 0.13 0.05 0.10 0.35 0.08 
4F 0.72 0.21 0.67 0.43 0.34 
5F 1.00 1.00 1.00 1.00 0.69 

PMC Good Good Good Good Good 

V. CONCLUSION 
Experimental verification of damage detection of structures 

using seismic response data (accelerations) has been carried out 
under realistic earthquake simulations via shaking table. The 
method of damage locating vector is adopted utilizing system 
parameters identified by the N4SID algorithm developed for 
deterministic-stochastic subspace models. The algorithm is 
applicable for both full and partial observation conditions. 
Based on the test results, the conclusion is drawn as the 
following, 
A. Damage localization utilizing seismic response data, in 

particular the floor accelerations, proves feasible. 
B. Under a full observation condition where all floors are 

observed, the damaged location(s) can be successfully 
identified, regardless of single or multiple damage 
conditions. 

C. Under a partial observation condition where 3 out of 5 
floors are observed, only structures with single damage can 
be identified if the damaged storey is co-located with one 
of the observed floor. The scheme fails, however, to locate 
the damaged stories in multiple damage conditions in 
general. 

D. The scheme proves to be sufficient in identifying new or 
extended damage(s) without exception under a full 
observation condition. 
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